Homotopy invariants for ($)over-bar0, n via Koszul duality
被引:6
|
作者:
Dotsenko, Vladimir
论文数: 0引用数: 0
h-index: 0
机构:
Univ Strasbourg, Inst Rech Math Avancee, UMR 7501, 7 Rue Rene Descartes, F-67000 Strasbourg, France
CNRS, 7 Rue Rene Descartes, F-67000 Strasbourg, FranceUniv Strasbourg, Inst Rech Math Avancee, UMR 7501, 7 Rue Rene Descartes, F-67000 Strasbourg, France
Dotsenko, Vladimir
[1
,2
]
机构:
[1] Univ Strasbourg, Inst Rech Math Avancee, UMR 7501, 7 Rue Rene Descartes, F-67000 Strasbourg, France
[2] CNRS, 7 Rue Rene Descartes, F-67000 Strasbourg, France
We show that the integer cohomology rings of the moduli spaces of stable rational marked curves are Koszul. This answers an open question of Manin. Using the machinery of Koszul spaces developed by Berglund, we compute the rational homotopy Lie algebras of those spaces, and obtain some estimates for Betti numbers of their free loop spaces in case of torsion coefficients. We also prove and conjecture some generalisations of our main result.