Homotopy invariants for ($)over-bar0, n via Koszul duality

被引:6
|
作者
Dotsenko, Vladimir [1 ,2 ]
机构
[1] Univ Strasbourg, Inst Rech Math Avancee, UMR 7501, 7 Rue Rene Descartes, F-67000 Strasbourg, France
[2] CNRS, 7 Rue Rene Descartes, F-67000 Strasbourg, France
关键词
MODULI SPACE; TORIC VARIETIES; CYCLIC HOMOLOGY; POINTED CURVES; STABLE CURVES; BETTI NUMBERS; COHOMOLOGY; SERIES; OPERADS; RING;
D O I
10.1007/s00222-021-01081-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the integer cohomology rings of the moduli spaces of stable rational marked curves are Koszul. This answers an open question of Manin. Using the machinery of Koszul spaces developed by Berglund, we compute the rational homotopy Lie algebras of those spaces, and obtain some estimates for Betti numbers of their free loop spaces in case of torsion coefficients. We also prove and conjecture some generalisations of our main result.
引用
收藏
页码:77 / 106
页数:30
相关论文
共 50 条
  • [1] Homotopy invariants for [inline-graphic not available: see fulltext] via Koszul duality
    Vladimir Dotsenko
    Inventiones mathematicae, 2022, 228 : 77 - 106
  • [2] EQUATIONS FOR (M)over-bar0,n
    Keel, Sean
    Tevelev, Jenia
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2009, 20 (09) : 1159 - 1184
  • [3] Observation of (B)over-bar0→(D)over-bar0η′ and (B)over-bar0→(D)over-bar*0η′ -: art. no. 011103
    Schümann, J
    Abe, K
    Abe, K
    Aihara, H
    Asano, Y
    Aushev, T
    Bahinipati, S
    Bakich, AM
    Ban, Y
    Bedny, I
    Bitenc, U
    Bizjak, I
    Blyth, S
    Bondar, A
    Bozek, A
    Bracko, M
    Brodzicka, J
    Browder, TE
    Chang, MC
    Chang, P
    Chao, Y
    Chen, A
    Chen, WT
    Cheon, BG
    Chistov, R
    Choi, SK
    Choi, Y
    Choi, YK
    Chuvikov, A
    Cole, S
    Dalseno, J
    Dash, M
    Eidelman, S
    Enari, Y
    Fang, F
    Gabyshev, N
    Garmash, A
    Gershon, T
    Gokhroo, G
    Golob, B
    Haba, J
    Hastings, NC
    Hayasaka, K
    Hayashii, H
    Hazumi, M
    Hinz, L
    Hokuue, T
    Hoshi, Y
    Hou, WS
    Hsiung, YB
    PHYSICAL REVIEW D, 2005, 72 (01)
  • [4] A fansy divisor on (M)over-bar0,n
    Altmann, Klaus
    Hein, Georg
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2008, 212 (04) : 840 - 850
  • [5] The automorphism group of (M)over-bar0,n
    Bruno, Andrea
    Mella, Massimiliano
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2013, 15 (03) : 949 - 968
  • [6] On the derived category of (M)over-bar0,n
    Manin, Yu. I.
    Smirnov, M. N.
    IZVESTIYA MATHEMATICS, 2013, 77 (03) : 525 - 540
  • [7] PULLBACKS OF κ CLASSES ON (M)over-bar0,n
    Ramadas, Rohini
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (08) : 3245 - 3260
  • [8] Products of boundary classes on (M)over-bar0,n via balanced weights
    Gillespie, Maria
    Levinson, Jake
    EXPOSITIONES MATHEMATICAE, 2024, 42 (04)
  • [9] Quark-hadron duality for K0-(K)over-bar0 mixing
    Penin, AA
    Pivovarov, AA
    MODERN PHYSICS LETTERS A, 1998, 13 (27) : 2205 - 2212
  • [10] Observation of (B)over-bar0→D0(K)over-bar0 and (B)over-bar0→D0(K)over-bar*0 decays -: art. no. 141802
    Krokovny, P
    Abe, K
    Abe, T
    Adachi, I
    Aihara, H
    Akatsu, M
    Asano, Y
    Aso, T
    Aulchenko, V
    Aushev, T
    Bakich, AM
    Ban, Y
    Bay, A
    Bedny, I
    Bondar, A
    Bozek, A
    Bracko, M
    Brodzicka, J
    Browder, TE
    Casey, BCK
    Chang, P
    Chao, Y
    Chen, KF
    Cheon, BG
    Chistov, R
    Choi, SK
    Choi, Y
    Choi, YK
    Danilov, M
    Drutskoy, A
    Eidelman, S
    Eiges, V
    Enari, Y
    Fukunaga, C
    Gabyshev, N
    Garmash, A
    Gershon, T
    Haba, J
    Hara, T
    Hasuko, K
    Hayashii, H
    Hazumi, M
    Higuchi, I
    Higuchi, T
    Hojo, T
    Hoshi, Y
    Hou, WS
    Huang, HC
    Igarashi, Y
    Iijima, T
    PHYSICAL REVIEW LETTERS, 2003, 90 (14)