Segmentation-free Query-by-String Word Spotting with Bag-of-Features HMMs

被引:0
|
作者
Rothacker, Leonard [1 ]
Fink, Gernot A. [1 ]
机构
[1] TU Dortmund Univ, Dept Comp Sci, D-44221 Dortmund, Germany
关键词
RECOGNITION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Word spotting allows to explore document images without requiring a full transcription. In the query-by-string scenario considered in this paper, it is possible to search arbitrary keywords while only limited prior information about the documents is required. We learn context-dependent character models from a training set that is small with respect to the number of models. This is possible due to the use of Bag-of-Features HMMs that are especially suited for estimating robust models from limited training material. In contrast to most query-by-string methods we consider a fully segmentation-free decoding framework that does not require any pre-segmentation on word or line level. Experiments on the well-known George Washington benchmark demonstrate the high accuracy of our method.
引用
收藏
页码:661 / 665
页数:5
相关论文
共 49 条
  • [1] Bag-of-Features HMMs for Segmentation-free Word Spotting in Handwritten Documents
    Rothacker, Leonard
    Rusinol, Marcal
    Fink, Gernot A.
    [J]. 2013 12TH INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION (ICDAR), 2013, : 1305 - 1309
  • [2] Annotation-Free Word Spotting with Bag-of-Features HMMs
    Rothacker, Leonard
    Wolf, Fabian
    Fink, Gernot A.
    [J]. International Journal of Pattern Recognition and Artificial Intelligence, 2023, 35 (04)
  • [3] Annotation-Free Word Spotting with Bag-of-Features HMMs
    Rothacker, Leonard
    Wolf, Fabian
    Fink, Gernot A.
    [J]. INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2021, 35 (04)
  • [4] Integrating Visual and Textual Cues for Query-by-String Word Spotting
    Aldavert, David
    Rusinol, Marcal
    Toledo, Ricardo
    Llados, Josep
    [J]. 2013 12TH INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION (ICDAR), 2013, : 511 - 515
  • [5] LSDE: Levenshtein Space Deep Embedding for Query-by-string Word Spotting
    Gomez, Lluis
    Rusinol, Marcal
    Karatzas, Dimosthenis
    [J]. 2017 14TH IAPR INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION (ICDAR), VOL 1, 2017, : 499 - 504
  • [6] Segmentation-free word spotting with exemplar SVMs
    Almazan, Jon
    Gordo, Albert
    Fornes, Alicia
    Valveny, Ernest
    [J]. PATTERN RECOGNITION, 2014, 47 (12) : 3967 - 3978
  • [7] Segmentation-free Word Spotting for Handwritten Arabic Documents
    Khaissidi, G.
    Elfakir, Y.
    Mrabti, M.
    Lakhliai, Z.
    Chenouni, D.
    El Yacoubi, M.
    [J]. INTERNATIONAL JOURNAL OF INTERACTIVE MULTIMEDIA AND ARTIFICIAL INTELLIGENCE, 2016, 4 (01): : 6 - 10
  • [8] Word Hypotheses for Segmentation-free Word Spotting in Historic Document Images
    Rothacker, Leonard
    Sudholt, Sebastian
    Rusakov, Eugen
    Kasperidus, Matthias
    Fink, Gernot A.
    [J]. 2017 14TH IAPR INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION (ICDAR), VOL 1, 2017, : 1174 - 1179
  • [9] A segmentation-free word spotting method for historical printed documents
    Konidaris, Thomas
    Kesidis, Anastasios L.
    Gatos, Basilis
    [J]. PATTERN ANALYSIS AND APPLICATIONS, 2016, 19 (04) : 963 - 976
  • [10] Onmilingual segmentation-free word spotting for ancient manuscripts indexation
    Leydier, Y
    Le Bourgeois, F
    Emptoz, H
    [J]. EIGHTH INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION, VOLS 1 AND 2, PROCEEDINGS, 2005, : 533 - 537