Photoresponsive ionic liquid crystals assembled via halogen bond: en route towards light-controllable ion transporters

被引:21
|
作者
Saccone, Marco [1 ]
Palacio, Francisco Fernandez [2 ]
Cavallo, Gabriella [2 ]
Dichiarante, Valentina [2 ]
Virkki, Matti [1 ]
Terraneo, Giancarlo [2 ]
Priimagi, Arri [1 ]
Metrangolo, Pierangelo [2 ,3 ]
机构
[1] Tampere Univ Technol, Lab Chem & Bioengn, POB 541, FI-33101 Tampere, Finland
[2] Politecn Milan, Dept Chem Mat & Chem Engn Giulio Natta, Supramol & BioNano Mat Lab SupraBioNanoLab, Via L Mancinelli 7, I-20131 Milan, Italy
[3] Aalto Univ, Dept Appl Phys, HYBER Ctr Excellence, POB 15100, FI-02150 Espoo, Finland
基金
欧洲研究理事会; 芬兰科学院;
关键词
SUPRAMOLECULAR MATERIALS; COMPLEXES; ALIGNMENT; POLYELECTROLYTE; ACTUATORS; POLYMERS; SALTS; DYE;
D O I
10.1039/c7fd00120g
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We demonstrate that halogen bonding (XB) can offer a novel approach for the construction of photoresponsive ionic liquid crystals. In particular, we assembled two new supramolecular complexes based on 1-ethyl-3-methylimidazolium iodides and azobenzene derivatives containing an iodotetrafluoro-benzene ring as XB donor, where the iodide anion acted as an XB acceptor. DSC and X-ray diffraction analyses revealed that the preferred stoichiometry between the XB donors and acceptors is 2 : 1, and that the iodide anions act as bidentate XB-acceptors, binding two azobenzene derivatives. Due to the high directionality of the XB, calamitic superanions are obtained, while the segregation occurring between the charged and uncharged parts of the molecules gives rise to a layered structure in the crystal lattice. Despite the fact that the starting materials are non-mesomorphic, the halogen-bonded supramolecular complexes exhibited monotropic lamellar liquid-crystalline phases over broad temperature ranges, as confirmed with polarized optical microscopy. Due to the presence of the azobenzene moieties, the LCs were photoresponsive, and a LC-to-isotropic phase transition could be obtained by irradiation with UV light. We envisage that the light-induced phase transition, in combination with the ionic nature of the LC, provides a route towards light-induced control over ion transport and conductance in these supramolecular complexes.
引用
收藏
页码:407 / 422
页数:16
相关论文
empty
未找到相关数据