Computational modeling of PEM fuel cells with PBI membranes

被引:0
|
作者
Cheddie, Denver F. [1 ]
Munroe, Norman D. H. [1 ]
机构
[1] Florida Int Univ, Miami, FL 33174 USA
关键词
intermediate temperature; PEM fuel cell; mathematical modeling; polybenzimidazole; PBI;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
A parametric model of a proton exchange membrane fuel cell (PEMFC) operating with a polybenzimidazole (PBI) membrane is presented. The model is three dimensional and applicable for PEMFCs operating,at intermediate temperatures (120-150 degrees C). It accounts for all transport and polarization phenomena, and the results compare well with published experimental data for equivalent operating conditions. Results for oxygen concentration and temperature variations are presented. The model predicts the oxygen depletion, which occurs in the catalyst area under the fibs, and which gives an indication of the catalyst utilization. Results also predict that for an output power density of 1 kW m(-2), a cell temperature rise of up to 30 K can be expected for typical laboratory operating conditions. Parametric analyses indicate that significant gain in fuel cell performance can be expected by increasing the conductivity of the PBI membrane. Further, results demonstrate that when the catalyst region is well utilized, increasing the catalyst activity results in only a small improvement in performance.
引用
收藏
页码:243 / 252
页数:10
相关论文
共 50 条
  • [1] Characterization of PBI Membranes for High Temperature PEM Fuel Cells
    Yeager, Gary W.
    Krishnan, Lakshmi
    Early, Thomas
    Zhang, Chunxin T.
    Hjuler, Hans Aage
    Terkelsen, Carina
    Yang, J.
    Li, Q.
    Steenberg, Thomas
    [J]. POLYMER ELECTROLYTE FUEL CELLS 13 (PEFC 13), 2013, 58 (01): : 705 - 711
  • [2] Modeling of CO influence in PBI electrolyte PEM fuel cells
    Korsgaard, Anders Risum
    Nielsen, Mads Pagh
    Bang, Mads
    Kaer, Soren Knudsen
    [J]. PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON FUEL CELL SCIENCE, ENGINEERING, AND TECHNOLOGY, PTS A AND B, 2006, : 911 - 915
  • [3] Thermal curing of PBI membranes for high temperature PEM fuel cells
    Aili, David
    Cleemann, Lars N.
    Li, Qingfeng
    Jensen, Jens Oluf
    Christensen, Erik
    Bjerrum, Niels J.
    [J]. JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (12) : 5444 - 5453
  • [4] Roll-to-roll coated PBI membranes for high temperature PEM fuel cells
    Steenberg, Thomas
    Hjuler, Hans Aage
    Terkelsen, Carina
    Sanchez, Maria T. R.
    Cleemann, Lars N.
    Krebs, Frederik C.
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (03) : 6076 - 6080
  • [5] Membranes for PEM Fuel Cells
    Yandrasits, Michael A.
    Hamrock, Steven J.
    [J]. FUEL CELL CHEMISTRY AND OPERATION, 2010, 1040 : 15 - 29
  • [6] PBI membranes for fuel cells and devices
    Benicewicz, Brian C.
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 246
  • [7] Computational fluid dynamics modeling of carbon corrosion in PEM fuel cells
    Gidwani, Ashok
    Jain, Kunal
    Thoms, Richard
    Cole, James Vernon
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2009, 238
  • [8] Computational modeling and experimental verification of cathode catalyst layer on PEM fuel cells
    Kil, Seyma
    Ozdemir, Oguz Kaan
    Insel, Mert Akin
    Sadikoglu, Hasan
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (62) : 26665 - 26672
  • [9] Computational Model of Hydrogen PEM Fuel Cells
    Moldrik, Petr
    Hrdina, Libor
    Petrov, Jan
    Bernat, Petr
    Kacor, Petr
    Lorencic, David
    [J]. 2024 24TH INTERNATIONAL SCIENTIFIC CONFERENCE ON ELECTRIC POWER ENGINEERING, EPE 2024, 2024, : 24 - 29
  • [10] Modeling and simulation of PEM fuel cells
    Fuhrmann, J.
    Haasdonk, B.
    Holzbecher, E.
    Ohlberger, M.
    [J]. JOURNAL OF FUEL CELL SCIENCE AND TECHNOLOGY, 2008, 5 (02):