DETECTION AND CLASSIFICATION OF BRAIN TUMOURS FROM MRI IMAGES USING FASTER R-CNN

被引:43
|
作者
Avsar, Ercan [1 ]
Salcin, Kerem [1 ]
机构
[1] Cukurova Univ, Dept Elect & Elect Engn, Adana, Turkey
来源
TEHNICKI GLASNIK-TECHNICAL JOURNAL | 2019年 / 13卷 / 04期
关键词
Brain Tumour; Classification; Convolutional Neural Network; Deep Learning; Glioma; Meningioma; Pituitary; SEGMENTATION; WAVELET;
D O I
10.31803/tg-20190712095507
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Magnetic resonance imaging (MRI) is a useful method for diagnosis of tumours in human brain. In this work, MRI images have been analysed to detect the regions containing tumour and classify these regions into three different tumour categories: meningioma, glioma, and pituitary. Deep learning is a relatively recent and powerful method for image classification tasks. Therefore, faster Region-based Convolutional Neural Networks (faster R-CNN), a deep learning method, has been utilized and implemented via TensorFlow library in this study. A publicly available dataset containing 3,064 MRI brain images (708 meningioma, 1426 glioma, 930 pituitary) of 233 patients has been used for training and testing of the classifier. It has been shown that faster R-CNN method can yield an accuracy of 91.66% which is higher than the related work using the same dataset.
引用
下载
收藏
页码:337 / 342
页数:6
相关论文
共 50 条
  • [1] A mask R-CNN approach for detection and classification of brain tumours from MR images
    Kordemir, Merve
    Cevik, Kerim Kursat
    Bozkurt, Ahmet
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING-IMAGING AND VISUALIZATION, 2024, 11 (07):
  • [2] Detection and classification of COVID-19 by using faster R-CNN and mask R-CNN on CT images
    M. Emin Sahin
    Hasan Ulutas
    Esra Yuce
    Mustafa Fatih Erkoc
    Neural Computing and Applications, 2023, 35 : 13597 - 13611
  • [3] Detection and classification of COVID-19 by using faster R-CNN and mask R-CNN on CT images
    Sahin, M. Emin
    Ulutas, Hasan
    Yuce, Esra
    Erkoc, Mustafa Fatih
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (18): : 13597 - 13611
  • [4] Detection of Left Ventricular Cavity from Cardiac MRI Images Using Faster R-CNN
    Shaaf, Zakarya Farea
    Jamil, Muhammad Mahadi Abdul
    Ambar, Radzi
    Alattab, Ahmed Abdu
    Yahya, Anwar Ali
    Asiri, Yousef
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 74 (01): : 1819 - 1835
  • [5] Ungulate Detection and Species Classification from Camera Trap Images Using RetinaNet and Faster R-CNN
    Vecvanags, Alekss
    Aktas, Kadir
    Pavlovs, Ilja
    Avots, Egils
    Filipovs, Jevgenijs
    Brauns, Agris
    Done, Gundega
    Jakovels, Dainis
    Anbarjafari, Gholamreza
    ENTROPY, 2022, 24 (03)
  • [6] DETECTION OF REPLICATION FORKS IN EM IMAGES USING FASTER R-CNN
    Zhao, Wei
    Manolika, Eleni Maria
    Chaudhuri, Arnab Ray
    Smal, Ihor
    2021 IEEE 18TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2021, : 1786 - 1789
  • [7] Tumor Detection In Breast Histopathological Images Using Faster R-CNN
    Harrison, Pratibha
    Park, Kihan
    2021 INTERNATIONAL SYMPOSIUM ON MEDICAL ROBOTICS (ISMR), 2021,
  • [8] Kiwifruit detection in field images using Faster R-CNN with ZFNet
    Fu, Longsheng
    Feng, Yali
    Majeed, Yaqoob
    Zhang, Xin
    Zhang, Jing
    Karkee, Manoj
    Zhang, Qin
    IFAC PAPERSONLINE, 2018, 51 (17): : 45 - 50
  • [9] Fault Detection from Bend Test Images of Welding Using Faster R-CNN
    Kato, Shigeru
    Hino, Takanori
    Kumeno, Hironori
    Kume, Shunsaku
    Kagawa, Tomomichi
    Nobuhara, Hajime
    ADVANCES IN INTERNET, DATA & WEB TECHNOLOGIES (EIDWT-2022), 2022, 118 : 190 - 200
  • [10] FIRE DETECTION FROM IMAGES USING FASTER R-CNN AND MULTIDIMENSIONAL TEXTURE ANALYSIS
    Barmpoutis, Panagiotis
    Dimitropoulos, Kosmas
    Kaza, Kyriaki
    Grammalidis, Nikos
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 8301 - 8305