Shoreline predictive modeling using artificial neural networks

被引:5
|
作者
Goncalves, Rodrigo Mikosz [1 ,2 ]
Coelho, Leandro Dos Santos [3 ]
Krueger, Claudia Pereira [2 ]
Heck, Bernhard [4 ]
机构
[1] Univ Fed Pernambuco UFPE, CTG, Dept Engn Cartog, Recife, PE, Brazil
[2] Univ Fed Parana UFPR, Programa Posgrad Ciencias Geodes, Curitiba, Parana, Brazil
[3] Pontificia Univ Catolica Parana PUC PR, Programa Posgrad Engn Prod & Sistemas, Curitiba, Parana, Brazil
[4] Geodet Inst Karlsruhe, Karlsruhe Inst Technol, Karlsruhe, Alemanha, Germany
来源
BOLETIM DE CIENCIAS GEODESICAS | 2010年 / 16卷 / 03期
关键词
Coastal Mapping; Artificial Neural Network; Prediction Models; Shoreline;
D O I
10.1590/S1982-21702010000300004
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The study of models using geodetic temporal data which can possibly predict the shoreline position is an important task and can significantly contribute to coastal management. The studied area is located at municipality of Matinhos in the Parana State, Brazil. The temporal shoreline used to test the prediction model is respectively from analog photogrammetric data, related to the years 1954, 1963, 1980, 1991 and 1997, and GPS (Global Position System) geodetic surveys for 2001, 2002, 2005 and 2008 (as control). Two different tests with artificial neural network were organized setting the parameters like: architecture, number of neuron in hidden layers and the training algorithms. Comparing the residuals between the prediction to the shoreline of control, the best statistical results show the MAPE (Mean Absolute Percentage Error) is 0,28% using the Elman partially recurrent network with quasi-Newton training function and 0,46% using the neural network multilayer perceptron with Bayesian regulation training function.
引用
收藏
页码:420 / 444
页数:25
相关论文
共 50 条
  • [1] Using Artificial Neural Networks for Predictive Modeling of Graduates' Professional Choice
    Gerasimovic, Milica
    Stanojevic, Ljiljana
    Bugaric, Ugljesa
    Miljkovic, Zoran
    Veljovic, Alemoije
    [J]. NEW EDUCATIONAL REVIEW, 2011, 23 (01): : 175 - 188
  • [2] Artificial neural networks for predictive modeling in prostate cancer
    Gamito E.J.
    Crawford E.D.
    [J]. Current Oncology Reports, 2004, 6 (3) : 216 - 221
  • [3] Predictive Modeling of Signal Degradation in Urban VANETs Using Artificial Neural Networks
    Muktar, Bappa
    Fono, Vincent
    Zongo, Meyo
    [J]. ELECTRONICS, 2023, 12 (18)
  • [4] SPATIAL PREDICTIVE MAPPING USING ARTIFICIAL NEURAL NETWORKS
    Noack, S.
    Knobloch, A.
    Etzold, S. H.
    Barth, A.
    Kallmeier, E.
    [J]. ISPRS TECHNICAL COMMISSION II SYMPOSIUM, 2014, 40-2 : 79 - 86
  • [5] Modeling flexibility using artificial neural networks
    Förderer K.
    Ahrens M.
    Bao K.
    Mauser I.
    Schmeck H.
    [J]. Energy Informatics, 1 (Suppl 1) : 73 - 91
  • [6] Modeling of pain using artificial neural networks
    Haeri, M
    Asemani, D
    Gharibzadeh, S
    [J]. JOURNAL OF THEORETICAL BIOLOGY, 2003, 220 (03) : 277 - 284
  • [7] Monitoring river water quality through predictive modeling using artificial neural networks backpropagation
    Novianta, Muhammad Andang
    Syafrudin
    Warsito, Budi
    Rachmawati, Siti
    [J]. AIMS ENVIRONMENTAL SCIENCE, 2024, 11 (04) : 649 - 664
  • [8] Neutron Yield Predictions with Artificial Neural Networks: A Predictive Modeling Approach
    Schmitz, Benedikt
    Scheuren, Stefan
    [J]. JOURNAL OF NUCLEAR ENGINEERING, 2024, 5 (02): : 114 - 127
  • [9] Predictive Modeling of Aircraft Dynamics Using Neural Networks
    Soleyman, Sean
    Chen, Yang
    Fadaie, Joshua
    Hung, Fan
    Khosla, Deepak
    Moffit, Shawn
    Roach, Shane
    Tullock, Charles
    [J]. SAE INTERNATIONAL JOURNAL OF AEROSPACE, 2022, 15 (02): : 159 - 170