Let s > 2 be an integer and k > 12(s - 1) an integer. We give a necessary and-sufficient condition for a graph G containing no K-2,K-s with S(G) >= k/2 and Delta(G) >= k to contain every tree T of order k + 1. We then show that every graph G with no K2,s and average degree greater than k- 1 satisfies this condition, improving a result of. Haxell, and verifying a special case of the Erdos-Sos conjecture, which states that every graph of average degree greater than k - 1 contains every tree of order k + 1. (c) 2007 Wiley Periodicals, Inc.
机构:
Nanjing Normal Univ, Sch Math Sci, Inst Math, Nanjing 210023, Jiangsu, Peoples R China
Nanjing Normal Univ, Coll Taizhou, Taizhou 225300, Peoples R ChinaNanjing Normal Univ, Sch Math Sci, Inst Math, Nanjing 210023, Jiangsu, Peoples R China
Jin, Jing
Xu, Baogang
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Normal Univ, Sch Math Sci, Inst Math, Nanjing 210023, Jiangsu, Peoples R ChinaNanjing Normal Univ, Sch Math Sci, Inst Math, Nanjing 210023, Jiangsu, Peoples R China
机构:
Univ Calif Berkeley, Dept Ind Engn & Operat Res, Berkeley, CA 94720 USA
Univ Calif Berkeley, Walter A Haas Sch Business, Berkeley, CA 94720 USATechnion Israel Inst Technol, Fac Ind Engn & Management, IL-32000 Haifa, Israel
Hochbaum, Dorit S.
Levin, Asaf
论文数: 0引用数: 0
h-index: 0
机构:
Technion Israel Inst Technol, Fac Ind Engn & Management, IL-32000 Haifa, IsraelTechnion Israel Inst Technol, Fac Ind Engn & Management, IL-32000 Haifa, Israel