Individual Tree Detection and Qualitative Inventory of a Eucalyptus sp. Stand Using UAV Photogrammetry Data

被引:14
|
作者
Almeida, Andre [1 ]
Goncalves, Fabio [2 ]
Silva, Gilson [3 ]
Mendonca, Adriano [3 ]
Gonzaga, Maria [4 ]
Silva, Jeferson [5 ]
Souza, Rodolfo [6 ]
Leite, Igor [1 ]
Neves, Karina [7 ]
Boeno, Marcus [2 ]
Sousa, Braulio [8 ]
机构
[1] Univ Fed Sergipe, Dept Agr Engn, Av Marechal Rondon S-N, BR-49100000 Sao Cristovao, Brazil
[2] Canopy Remote Sensing Solut, BR-88032005 Florianopolis, SC, Brazil
[3] Univ Fed Espirito Santo, Dept Forest & Wood Sci, BR-29550 Jeronimo Monteiro, Brazil
[4] Univ Fed Sergipe, Dept Agron Engn, Av Marechal Rondon S-N, BR-49100000 Sao Cristovao, Brazil
[5] Univ Fed Espirito Santo, Forest Sci Post Graduat Program, BR-29550 Jeronimo Monteiro, Brazil
[6] Texas A&M Univ, Dept Biol & Agr Engn, College Stn, TX 77840 USA
[7] Univ Fed Sergipe, Water Resources Post Grad Program, Av Marechal Rondon S-N, BR-49100000 Sao Cristovao, Brazil
[8] Univ Fed Sergipe, Dept Zootechn, Av Marechal Rondon S-N, BR-49100000 Sao Cristovao, Brazil
关键词
UAS; 3D point cloud; enhanced forest inventories; precision silviculture; SfM; individual tree detection; Gini; lorenz curve; AIRBORNE LIDAR; VEGETATION STRUCTURE; POINT CLOUDS; FOREST; HEIGHT; VARIABLES; ACCURACY; IMAGERY; AREA; QUANTIFICATION;
D O I
10.3390/rs13183655
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Digital aerial photogrammetry (DAP) data acquired by unmanned aerial vehicles (UAV) have been increasingly used for forest inventory and monitoring. In this study, we evaluated the potential of UAV photogrammetry data to detect individual trees, estimate their heights (ht), and monitor the initial silvicultural quality of a 1.5-year-old Eucalyptus sp. stand in northeastern Brazil. DAP estimates were compared with accurate tree locations obtained with real time kinematic (RTK) positioning and direct height measurements obtained in the field. In addition, we assessed the quality of a DAP-UAV digital terrain model (DTM) derived using an alternative ground classification approach and investigated its performance in the retrieval of individual tree attributes. The DTM built for the stand presented an RMSE of 0.099 m relative to the RTK measurements, showing no bias. The normalized 3D point cloud enabled the identification of over 95% of the stand trees and the estimation of their heights with an RMSE of 0.36 m (11%). However, ht was systematically underestimated, with a bias of 0.22 m (6.7%). A linear regression model, was fitted to estimate tree height from a maximum height metric derived from the point cloud reduced the RMSE by 20%. An assessment of uniformity indices calculated from both field and DAP heights showed no statistical difference. The results suggest that products derived from DAP-UAV may be used to generate accurate DTMs in young Eucalyptus sp. stands, detect individual trees, estimate ht, and determine stand uniformity with the same level of accuracy obtained in traditional forest inventories.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Airborne laser scanning applied to eucalyptus stand inventory at individual tree level
    Cosenzao, Diogo Nepomuceno
    Soares, Vicente Paulo
    Leite, Helio Garcia
    Gleriani, Jose Marinaldo
    do Amaral, Cibele Hummel
    Gripp Junior, Joel
    Lopes da Silva, Antonilmar Araujo
    Soares, Paula
    Tome, Margarida
    PESQUISA AGROPECUARIA BRASILEIRA, 2018, 53 (12) : 1373 - 1382
  • [2] Individual Tree Detection in a Eucalyptus Plantation Using Unmanned Aerial Vehicle (UAV)-LiDAR
    Picos, Juan
    Bastos, Guillermo
    Miguez, Daniel
    Alonso, Laura
    Armesto, Julia
    REMOTE SENSING, 2020, 12 (05)
  • [3] INFLUENCE OF Eucalyptus sp STAND AGE ON TREE COUNTING WITH LIDAR DATA
    de Oliveira, Luciano Teixeira
    Tavares de Carvalho, Luis Marcelo
    Ferreira, Maria Zelia
    de Andrade Oliveira, Thomaz Chaves
    Felipe Pimentel Batista, Vanessa Thais
    CERNE, 2014, 20 (04) : 557 - 565
  • [4] Individual tree detection using UAV-lidar and UAV-SfM data: A tutorial for beginners
    Mohan, Midhun
    Leite, Rodrigo Vieira
    Broadbent, Eben North
    Jaafar, Wan Shafrina Wan Mohd
    Srinivasan, Shruthi
    Bajaj, Shaurya
    Corte, Ana Paula Dalla
    Amaral, Cibele Hummel do
    Gopan, Gopika
    Saad, Siti Nor Maizah
    Kamarulzaman, Aisyah Marliza Muhmad
    Prata, Gabriel Atticciati
    Llewelyn, Emma
    Johnson, Daniel J.
    Doaemo, Willie
    Bohlman, Stephanie
    Zambrano, Angelica Maria Almeyda
    Cardil, Adrian
    OPEN GEOSCIENCES, 2021, 13 (01) : 1028 - 1039
  • [5] Individual Tree Crown Detection Using UAV Orthomosaic
    Tahar, Khairul Nizam
    Asmadin, Mimie Asmida
    Sulaiman, Saiful Aman Hj
    Khalid, Nafisah
    Idris, Ahmad Norhisyam
    Razali, Mohammad Hezri
    ENGINEERING TECHNOLOGY & APPLIED SCIENCE RESEARCH, 2021, 11 (02) : 7047 - 7053
  • [6] Individual Tree Detection from UAV Imagery Using Holder Exponent
    Belcore, Elena
    Wawrzaszek, Anna
    Wozniak, Edyta
    Grasso, Nives
    Piras, Marco
    REMOTE SENSING, 2020, 12 (15)
  • [7] Individual Palm Tree Detection Using Deep Learning on RGB Imagery to Support Tree Inventory
    Culman, Maria
    Delalieux, Stephanie
    Van Tricht, Kristof
    REMOTE SENSING, 2020, 12 (21) : 1 - 31
  • [8] Individual Tree Diameter Estimation in Small-Scale Forest Inventory Using UAV Laser Scanning
    Hao, Yuanshuo
    Widagdo, Faris Rafi Almay
    Liu, Xin
    Quan, Ying
    Dong, Lihu
    Li, Fengri
    REMOTE SENSING, 2021, 13 (01) : 1 - 21
  • [9] Evaluation of tree and stand-level growth models using national forest inventory data
    Andrew McCullagh
    Kevin Black
    Maarten Nieuwenhuis
    European Journal of Forest Research, 2017, 136 : 251 - 258
  • [10] Evaluation of tree and stand-level growth models using national forest inventory data
    McCullagh, Andrew
    Black, Kevin
    Nieuwenhuis, Maarten
    EUROPEAN JOURNAL OF FOREST RESEARCH, 2017, 136 (02) : 251 - 258