Improving the speed of convergence in the method of projections onto convex sets

被引:0
|
作者
Crombez, G [1 ]
机构
[1] State Univ Ghent, Dept Appl Math & Comp Sci, B-9000 Ghent, Belgium
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2001年 / 58卷 / 1-2期
关键词
projections onto convex sets; convex feasibility problem; speed of convergence;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A serious drawback of the method of projections onto convex sets to find a point in the intersection of a finite number of closed convex sets in an Euclidean space, is its often very slow convergence. This bad behaviour, sometimes called the "tunneling effect", seems a.o. to be connected with the monotone behaviour of the usual algorithms. We present a new algorithm that can interrupt at different steps this monotone behaviour; this can substantially improve the speed of convergence.
引用
收藏
页码:29 / 48
页数:20
相关论文
共 50 条
  • [1] Generalized projections onto convex sets
    Ferreira, O. P.
    Nemeth, S. Z.
    JOURNAL OF GLOBAL OPTIMIZATION, 2012, 52 (04) : 831 - 842
  • [2] Generalized projections onto convex sets
    O. P. Ferreira
    S. Z. Németh
    Journal of Global Optimization, 2012, 52 : 831 - 842
  • [3] Projections onto convex sets on the sphere
    Ferreira, O. P.
    Iusem, A. N.
    Nemeth, S. Z.
    JOURNAL OF GLOBAL OPTIMIZATION, 2013, 57 (03) : 663 - 676
  • [4] Projections onto convex sets on the sphere
    O. P. Ferreira
    A. N. Iusem
    S. Z. Németh
    Journal of Global Optimization, 2013, 57 : 663 - 676
  • [5] Consecutive projections onto convex sets
    Degenhard, A
    Hayes, C
    Leach, MO
    PHYSICS IN MEDICINE AND BIOLOGY, 2002, 47 (06): : N61 - N66
  • [6] Conformal radiotherapy computation by the method of alternating projections onto convex sets
    Lee, S
    Cho, PS
    Marks, RJ
    Oh, S
    PHYSICS IN MEDICINE AND BIOLOGY, 1997, 42 (06): : 1065 - 1086
  • [7] A convergent alternating projections onto convex sets method for data reconstruction
    Sun, Yimin
    Hirsch, Quentin
    GEOPHYSICS, 2024, 89 (01) : V49 - V63
  • [8] Projections onto closed convex sets in Hilbert spaces
    A. Domokos
    J. M. Ingram
    M. M. Marsh
    Acta Mathematica Hungarica, 2017, 152 : 114 - 129
  • [9] Differentiability Properties of Metric Projections onto Convex Sets
    Alexander Shapiro
    Journal of Optimization Theory and Applications, 2016, 169 : 953 - 964
  • [10] Projections onto closed convex sets in Hilbert spaces
    Domokos, A.
    Ingram, J. M.
    Marsh, M. M.
    ACTA MATHEMATICA HUNGARICA, 2017, 152 (01) : 114 - 129