The Pathogenesis of Acute Kidney Injury and the Toxic Triangle of Oxygen, Reactive Oxygen Species and Nitric Oxide

被引:0
|
作者
Aksu, Ugur [1 ,3 ]
Demirci, Cihan [3 ]
Ince, Can [1 ,2 ]
机构
[1] Univ Amsterdam, Acad Med Ctr, Dept Translat Physiol, NL-1105 AZ Amsterdam, Netherlands
[2] Erasmus MC Univ Hosp Rotterdam, Dept Intens Care, Rotterdam, Netherlands
[3] Istanbul Univ, Fac Sci, Dept Biol, Istanbul, Turkey
来源
关键词
ACUTE-RENAL-FAILURE; FLUID RESUSCITATION; CONSUMPTION; HYPOXIA; REPERFUSION;
D O I
暂无
中图分类号
R4 [临床医学];
学科分类号
1002 ; 100602 ;
摘要
Despite the identification of several of the cellular mechanisms thought to underlie the development of acute kidney injury (AKI), the pathophysiology of AKI is still poorly understood. It is clear, however, that instead of a single mechanism being responsible for its etiology, AKI is associated with an entire orchestra of failing cellular mechanisms. Renal microcirculation is the physiological compartment where these mechanisms come together and exert their integrated deleterious action. Therefore, the study of renal microcirculation and the identification of the determinants of its function in models of AKI can be expected to provide insight into the pathogenesis and resolution of AKI. A major determinant of adequate organ function is the adequate oxygen (O-2) supply at the microcirculatory level and utilization at mitochondrial levels for ATP production needed for performing organ function. The highly complex architecture of the renal microvasculature, the need to meet a high energy demand and the borderline hypoxemic nature of the kidney makes it an organ that is highly vulnerable to injury. Under normal, steady-state conditions, the oxygen supply to the renal tissues is well regulated and utilized not only for mitochondrial production of ATP (mainly for Na reabsorption), but also for the production of nitric oxide and the reactive oxygen species needed for physiological control of renal function. Under pathological conditions, such as inflammation, shock or sepsis, however, the renal microcirculation becomes compromised, which results in a disruption of the homeostasis of nitric oxide, reactive oxygen species, and oxygen supply and utilization. This imbalance results in these compounds exerting pathogenic effects, such as hypoxemia and oxidative stress, resulting in further deterioration of renal microcirculatory function. Our hypothesis is that this sequence of events underlies the development of AKI and that integrated therapeutic modalities targeting these pathogenic mechanisms will be effective therapeutic strategies in the clinical environment. Copyright (C) 2011 S. Karger AG, Basel
引用
收藏
页码:119 / 128
页数:10
相关论文
共 50 条
  • [1] Nitric Oxide and Reactive Oxygen Species in the Pathogenesis of Preeclampsia
    Matsubara, Keiichi
    Higaki, Takashi
    Matsubara, Yuko
    Nawa, Akihiro
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2015, 16 (03) : 4600 - 4614
  • [2] Role of nitric oxide and reactive oxygen species in the pathogenesis of preeclampsia
    Matsubara, Keiichi
    Matsubara, Yuko
    Hyodo, Shinji
    Katayama, Tomihiro
    Ito, Masaharu
    JOURNAL OF OBSTETRICS AND GYNAECOLOGY RESEARCH, 2010, 36 (02) : 239 - 247
  • [3] Interplay of Reactive Oxygen Species and Nitric Oxide: Nitric Oxide Coordinates Reactive Oxygen Species Homeostasis
    Lindermayr, Christian
    Durner, Joerg
    PLANT PHYSIOLOGY, 2015, 167 (04) : 1209 - 1210
  • [4] Endothelin, Nitric Oxide, and Reactive Oxygen Species in Diabetic Kidney Disease
    Pollock, Jennifer S.
    Pollock, David M.
    ENDOTHELIN IN RENAL PHYSIOLOGY AND DISEASE, 2011, 172 : 149 - 159
  • [5] Interactions between nitric oxide, oxygen, reactive oxygen species and reactive nitrogen species
    Brown, G. C.
    Borutaite, V.
    BIOCHEMICAL SOCIETY TRANSACTIONS, 2006, 34 : 953 - 956
  • [6] Mediators: Nitric oxide and other toxic oxygen species
    Evans, TJ
    Cohen, J
    PATHOLOGY OF SEPTIC SHOCK, 1996, 216 : 189 - 207
  • [7] Balance of Nitric Oxide and Reactive Oxygen Species in Myocardial Reperfusion Injury and Protection
    Folino, Anna
    Losano, Gianni
    Rastaldo, Raffaella
    JOURNAL OF CARDIOVASCULAR PHARMACOLOGY, 2013, 62 (06) : 567 - 575
  • [8] Reactive oxygen species and nitric oxide in viral diseases
    Peterhans, E
    BIOLOGICAL TRACE ELEMENT RESEARCH, 1997, 56 (01) : 107 - 116
  • [9] Role of nitric oxide and reactive oxygen species in arthritis
    Cuzzocrea, Salvatore
    CURRENT PHARMACEUTICAL DESIGN, 2006, 12 (27) : 3551 - 3570
  • [10] Nitric Oxide and Reactive Oxygen Species in PCD Signaling
    Locato, Vittoria
    Paradiso, Annalisa
    Sabetta, Wilma
    De Gara, Laura
    de Pinto, Maria Concetta
    NITRIC OXIDE AND SIGNALING IN PLANTS, 2016, 77 : 165 - 192