Time-dependent quantum dynamics in a Gauss-Hermite basis

被引:29
|
作者
Billing, GD [1 ]
机构
[1] Univ Copenhagen, HC Orsted Inst, Dept Chem, DK-2200 Copenhagen O, Denmark
来源
JOURNAL OF CHEMICAL PHYSICS | 1999年 / 110卷 / 12期
关键词
D O I
10.1063/1.478450
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We formulate time-dependent quantum dynamics with a basis set in which the classical limit arises in a natural fashion. The basis set is time-dependent and can be used either for all degrees of freedom or together with time-independent basis functions, grids, etc. The basis-set is driven by classical mechanical equations of motion governed by an effective potential derived from the Dirac-Frenkel variational principle. We furthermore formulate an operator version of the theory. Here the coupling between the basis set functions located around the classical trajectories is obtained by solving the quantum matrix problem in a second quantization frame. In this approximation the quantum theory scales as (3N)(2), where N is the number of particles. (C) 1999 American Institute of Physics. [S0021-9606(99)01112-5].
引用
收藏
页码:5526 / 5537
页数:12
相关论文
共 50 条
  • [1] A split-lanczos method for solving time-dependent discrete variable Gauss-Hermite dynamics
    Billing, GD
    [J]. CHEMICAL PHYSICS LETTERS, 2001, 339 (3-4) : 237 - 242
  • [2] Quantum dynamics of electronic transitions with Gauss-Hermite wave packets
    Borrelli, Raffaele
    Peluso, Andrea
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2016, 144 (11):
  • [3] The Gauss-Hermite basis set in a tunneling problem
    Adhikari, S
    Billing, GD
    [J]. CHEMICAL PHYSICS LETTERS, 1999, 309 (3-4) : 249 - 256
  • [4] Gauss-Hermite spectrogram
    Aamir, Khalid Mahmood
    Zaman, Arif
    Maud, Mohammad Ali
    Loan, Asim
    [J]. ADVANCED INTELLIGENT COMPUTING THEORIES AND APPLICATIONS: WITH ASPECTS OF CONTEMPORARY INTELLIGENT COMPUTING TECHNIQUES, 2007, 2 : 878 - +
  • [5] Gauss-Hermite approximation formula
    Pomorski, K
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2006, 174 (03) : 181 - 186
  • [6] A NOTE ON GAUSS-HERMITE QUADRATURE
    LIU, Q
    PIERCE, DA
    [J]. BIOMETRIKA, 1994, 81 (03) : 624 - 629
  • [7] Generalized Gauss-Hermite filtering
    Singer, Hermann
    [J]. ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2008, 92 (02) : 179 - 195
  • [8] Gauss-Hermite interval quadrature rule
    Department of Mathematics, Faculty of Electronic Engineering, University of Niš, P.O. Box 73, 18000 Niš, Rs
    [J]. Comput Math Appl, 4 (544-555):
  • [9] Gauss-Hermite interval quadrature rule
    Milovanovic, Gradimir V.
    Cvetkovic, Aleksandar S.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2007, 54 (04) : 544 - 555
  • [10] GAUSS-HERMITE QUADRATURE FOR THE BROMWICH INTEGRAL
    Weideman, J. A. C.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57 (05) : 2200 - 2216