Estimating the pen trajectories of static signatures using hidden Markov models

被引:30
|
作者
Nel, EM
du Preez, JA
Herbst, BM
机构
[1] Univ Stellenbosch, Dept Elect & Elect Engn, ZA-7602 Matieland, South Africa
[2] Univ Stellenbosch, Dept Appl Math, ZA-7602 Matieland, South Africa
关键词
pattern recognition; document and text processing; document analysis; handwriting analysis;
D O I
10.1109/TPAMI.2005.221
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Static signatures originate as handwritten images on documents and by definition do not contain any dynamic information. This lack of information makes static signature verification systems significantly less reliable than their dynamic counterparts. This study involves extracting dynamic information from static images, specifically the pen trajectory while the signature was created. We assume that a dynamic version of the static image is available (typically obtained during an earlier registration process). We then derive a hidden Markov model from the static image and match it to the dynamic version of the image. This match results in the estimated pen trajectory of the static image.
引用
收藏
页码:1733 / 1746
页数:14
相关论文
共 50 条
  • [1] Estimating the pen trajectories of multi-path static scripts using hidden Markov models
    Nel, E
    du Preez, JA
    Herbst, BM
    [J]. EIGHTH INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION, VOLS 1 AND 2, PROCEEDINGS, 2005, : 41 - 45
  • [2] Categorization and learning of pen motion using hidden Markov models
    Tausky, D
    Mann, R
    [J]. 1ST CANADIAN CONFERENCE ON COMPUTER AND ROBOT VISION, PROCEEDINGS, 2004, : 488 - 495
  • [3] Using Hidden Markov Models in Estimating the Parameters of Hierarchical Systems
    O. A. Voina
    [J]. Cybernetics and Systems Analysis, 2021, 57 : 730 - 739
  • [4] USING HIDDEN MARKOV MODELS IN ESTIMATING THE PARAMETERS OF HIERARCHICAL SYSTEMS
    Voina, O. A.
    [J]. CYBERNETICS AND SYSTEMS ANALYSIS, 2021, 57 (05) : 730 - 739
  • [5] Clustering Vehicle Maneuver Trajectories Using Mixtures of Hidden Markov Models
    Martinsson, John
    Mohammadiha, Nasser
    Schliep, Alexander
    [J]. 2018 21ST INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2018, : 3698 - 3705
  • [6] ESTIMATING THE ORDER OF HIDDEN MARKOV-MODELS
    RYDEN, T
    [J]. STATISTICS, 1995, 26 (04) : 345 - 354
  • [7] Estimating Neuronal Ageing with Hidden Markov Models
    Wang, Bing
    Pham, Tuan D.
    [J]. 2011 INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL MODELS FOR LIFE SCIENCES (CMLS-11), 2011, 1371 : 110 - 117
  • [8] Estimating Empirical Codon Hidden Markov Models
    De Maio, Nicola
    Holmes, Ian
    Schloetterer, Christian
    Kosiol, Carolin
    [J]. MOLECULAR BIOLOGY AND EVOLUTION, 2013, 30 (03) : 725 - 736
  • [9] Learning source trajectories using wrapped-phase hidden Markov models
    Smaragdis, P
    Boufounos, P
    [J]. 2005 WORKSHOP ON APPLICATIONS OF SIGNAL PROCESSING TO AUDIO AND ACOUSTICS (WASPAA), 2005, : 114 - 117
  • [10] Estimating Personality Impression from Speed Record Using Hidden Markov Models
    Jin, Yicheng
    Sakuma, Takuto
    Kato, Shohei
    Kunitachi, Tsutomu
    [J]. ELECTRONICS AND COMMUNICATIONS IN JAPAN, 2016, 99 (11) : 56 - 64