Domination in some subclasses of bipartite graphs

被引:16
|
作者
Pandey, Arti [1 ]
Panda, B. S. [2 ]
机构
[1] Indian Inst Technol Ropar, Dept Math, Nangal Rd, Rupnagar 140001, Punjab, India
[2] Indian Inst Technol Delhi, Dept Math, New Delhi 110016, India
关键词
Domination; Convex bipartite graphs; Graph classes; NP-completeness; CONVEX; SETS; TREE;
D O I
10.1016/j.dam.2018.03.029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A set D subset of V is called a dominating set of G = (V, E) if vertical bar N-G[v] boolean AND D vertical bar >= 1 for all v is an element of V. The MINIMUM DOMINATION problem is to find a dominating set of minimum cardinality of the input graph. In this paper, we study the MINIMUM DOMINATION problem for star-convex bipartite graphs, circular-convex bipartite graphs and triad-convex bipartite graphs. It is known that the MINIMUM DOMINATION PROBLEM for a graph with n vertices can be approximated with an approximation ratio of In n+1. However, we show that for any epsilon > 0, the MINIMUM DOMINATION problem does not admit a (1 - epsilon) In n-approximation algorithm even for star-convex bipartite graphs with n vertices unless NP subset of DTIME(n(O(log log) (n))). On the positive side, we propose polynomial time algorithms for computing a minimum dominating set of circular-convex bipartite graphs and triad-convex bipartite graphs, by making polynomial time Turing reductions from the MINIMUM DOMINATION problem for these graph classes to the MINIMUM DOMINATION problem for convex bipartite graphs. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:51 / 66
页数:16
相关论文
共 50 条
  • [1] Domination in Some Subclasses of Bipartite Graphs
    Pandey, Arti
    Panda, B. S.
    [J]. ALGORITHMS AND DISCRETE APPLIED MATHEMATICS (CALDAM 2015), 2015, 8959 : 169 - 180
  • [2] Signed and minus total domination on subclasses of bipartite graphs
    Lee, Chuan-Min
    [J]. ARS COMBINATORIA, 2011, 100 : 129 - 149
  • [3] Induced Matching in Some Subclasses of Bipartite Graphs
    Pandey, Arti
    Panda, B. S.
    Dane, Piyush
    Kashyap, Manav
    [J]. ALGORITHMS AND DISCRETE APPLIED MATHEMATICS, 2017, 10156 : 308 - 319
  • [4] Injective coloring of some subclasses of bipartite graphs and chordal graphs
    Panda, B. S.
    Priyamvada
    [J]. DISCRETE APPLIED MATHEMATICS, 2021, 291 : 68 - 87
  • [5] Dominating Induced Matching in Some Subclasses of Bipartite Graphs
    Panda, B. S.
    Chaudhary, Juhi
    [J]. ALGORITHMS AND DISCRETE APPLIED MATHEMATICS, CALDAM 2019, 2019, 11394 : 138 - 149
  • [6] Grundy coloring in some subclasses of bipartite graphs and their complements
    Verma, Shaily
    Panda, B. S.
    [J]. INFORMATION PROCESSING LETTERS, 2020, 163
  • [7] Dominating induced matching in some subclasses of bipartite graphs
    Panda, B. S.
    Chaudhary, Juhi
    [J]. THEORETICAL COMPUTER SCIENCE, 2021, 885 : 104 - 115
  • [8] Counting dominating sets in some subclasses of bipartite graphs
    Lin, Min-Sheng
    [J]. THEORETICAL COMPUTER SCIENCE, 2022, 923 : 337 - 347
  • [9] Domination in bipartite graphs
    Harant, Jochen
    Rautenbach, Dieter
    [J]. DISCRETE MATHEMATICS, 2009, 309 (01) : 113 - 122
  • [10] Transitivity on subclasses of bipartite graphs
    Subhabrata Paul
    Kamal Santra
    [J]. Journal of Combinatorial Optimization, 2023, 45