Anisotropic SST turbulence model for shock-boundary layer interaction

被引:16
|
作者
Raje, Pratikkumar [1 ]
Sinha, Krishnendu [1 ]
机构
[1] Indian Inst Technol, Mumbai 400076, Maharashtra, India
关键词
SBLI; RANS; Turbulence model; SST k-omega; EARSM; Structure parameter; NONLINEAR EDDY-VISCOSITY; DIRECT NUMERICAL-SIMULATION; ALGEBRAIC STRESS MODELS; HEAT-FLUX; WAVE; UNSTEADINESS; FLOW;
D O I
10.1016/j.compfluid.2021.105072
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Menter SST k-omega is a Reynolds-averaged Navier-Stokes based two-equation turbulence model routinely used in industry for predicting aerodynamic flows. It shows excellent performance for low-speed flows, but gives inconsistent predictions for high-speed shock-induced separated flows. The model assumption of using a constant value of 0.31 for the structure parameter contradicts experimental observations. The model is also unable to predict Reynolds stress anisotropy generated by shock waves. In this work, we augment the SST model with quadratic eddy viscosity formulation of an explicit algebraic Reynolds stress model. A new relation for the structure parameter is proposed, making it a function of the local strain-rates and is no longer a constant in the regions of shock/turbulent boundary layer interaction (SBLI). Additional shock-physics is introduced using (Sinha et al., 2003) shock-unsteadiness model and an upper limit to the value of structure parameter is set in regions of shock waves. The new model, termed as SUQ-SST, is validated using a number of SBLI test cases ranging from supersonic to hypersonic speeds and near-incipient to fully-separated flows. Results show that the modifications do not alter the boundary layer prediction capability of the SST model. On the other hand, the new model gives significant improvement in predicting Reynolds stress anisotropy, flow separation, and surface properties in a wide range of SBLI flows.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Simulation of Hypersonic Shock-Boundary Layer Interaction Using Shock-Strength Dependent Turbulence Model
    Rathi, Harsha
    Sinha, Krishnendu
    [J]. AIAA JOURNAL, 2024, 62 (09) : 3244 - 3257
  • [2] Simulation of Hypersonic Shock-Boundary Layer Interaction Using Shock-Strength Dependent Turbulence Model
    Rathi, Harsha
    Sinha, Krishnendu
    [J]. AIAA Journal, 1600, 62 (09): : 3244 - 3257
  • [3] SHOCK-BOUNDARY LAYER INTERACTION ON HEATED WALL - ASSESSMENT OF 3 TURBULENCE MODELS
    BENAY, R
    [J]. RECHERCHE AEROSPATIALE, 1991, (05): : 45 - 68
  • [4] New Shock Detector for Shock-Boundary Layer Interaction
    Liu, Chaoqun
    Oliveira, Maria
    [J]. HIGH PERFORMANCE COMPUTING AND APPLICATIONS, 2010, 5938 : 78 - 87
  • [5] SHOCK-BOUNDARY LAYER INTERACTION IN HYPERSONIC FLOW
    GAILLARD, L
    STORKMANN, V
    GRONIG, H
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II FASCICULE B-MECANIQUE PHYSIQUE CHIMIE ASTRONOMIE, 1995, 321 (05): : 183 - 186
  • [6] Turbulent Heat Flux Model for Hypersonic Shock-Boundary Layer Interaction
    Roy, Subhajit
    Sinha, Krishnendu
    [J]. AIAA JOURNAL, 2019, 57 (08) : 3624 - 3629
  • [7] Uncertainty Analysis of Parameters in SST Turbulence Model for Shock Wave-Boundary Layer Interaction
    Zhang, Kailing
    Li, Jinping
    Zeng, Fanzhi
    Wang, Qiang
    Yan, Chao
    [J]. AEROSPACE, 2022, 9 (02)
  • [8] SHOCK OBLIQUITY EFFECT ON TRANSONIC SHOCK-BOUNDARY LAYER INTERACTION
    INGER, GR
    SOBIECZKY, H
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1978, 58 (07): : T333 - T335
  • [9] SHOCK-BOUNDARY LAYER INTERACTION AND ENERGETICS IN TRANSONIC FLUTTER
    Karnick, Pradeepa T.
    Venkatraman, Kartik
    [J]. JOURNAL OF FLUID MECHANICS, 2017, 832 : 212 - 240
  • [10] Subgrid-scale turbulence in shock-boundary layer flows
    Jammalamadaka, Avinash
    Jaberi, Farhad
    [J]. THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS, 2015, 29 (1-2) : 29 - 54