Cross-domain Recommendation with Consistent Knowledge Transfer by Subspace Alignment

被引:2
|
作者
Zhang, Qian [1 ]
Lu, Jie [1 ]
Wu, Dianshuang [1 ]
Zhang, Guangquan [1 ]
机构
[1] Univ Technol, Fac Engn & Informat Technol, Ctr Artificial Intelligence, Decis Syst & E Serv Intelligence Lab, Sydney, NSW, Australia
关键词
Recommender systems; Cross-domain recommender systems; Knowledge transfer; Collaborative filtering; SYSTEM;
D O I
10.1007/978-3-030-02925-8_5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recommender systems have drawn great attention from both academic area and practical websites. One challenging and common problem in many recommendation methods is data sparsity, due to the limited number of observed user interaction with the products/services. Cross-domain recommender systems are developed to tackle this problem through transferring knowledge from a source domain with relatively abundant data to the target domain with scarce data. Existing cross-domain recommendation methods assume that similar user groups have similar tastes on similar item groups but ignore the divergence between the source and target domains, resulting in decrease in accuracy. In this paper, we propose a cross-domain recommendation method transferring consistent group-level knowledge through aligning the source subspace with the target one. Through subspace alignment, the discrepancy caused by the domain-shift is reduced and the knowledge shared local top-n recommendation via refined item-user bi-clustering two domains is ensured to be consistent. Experiments are conducted on five real-world datasets in three categories: movies, books and music. The results for nine cross-domain recommendation tasks show that our proposed method has improved the accuracy compared with five benchmarks.
引用
收藏
页码:67 / 82
页数:16
相关论文
共 50 条
  • [1] Multiple Knowledge Transfer for Cross-Domain Recommendation
    Do, Quan
    Verma, Sunny
    Chen, Fang
    Liu, Wei
    PRICAI 2019: TRENDS IN ARTIFICIAL INTELLIGENCE, PT III, 2019, 11672 : 529 - 542
  • [2] Domain-Oriented Knowledge Transfer for Cross-Domain Recommendation
    Zhao, Guoshuai
    Zhang, Xiaolong
    Tang, Hao
    Shen, Jialie
    Qian, Xueming
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 9539 - 9550
  • [3] Selective Knowledge Transfer for Cross-Domain Collaborative Recommendation
    Zhang, Hongwei
    Kong, Xiangwei
    Zhang, Yujia
    IEEE ACCESS, 2021, 9 : 48039 - 48051
  • [4] Cross-Domain Recommendation with Cross-Graph Knowledge Transfer Network
    Ouyang, Yi
    Guo, Bin
    Wang, Qianru
    Yu, Zhiwen
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2021), 2021,
  • [5] Cross-Domain Recommendation Algorithm Based on Knowledge Aggregation and Transfer
    Liu Z.
    Tian J.-Y.
    Yuan B.-X.
    Sun Y.-Q.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2020, 48 (10): : 1928 - 1932
  • [6] Cross-domain recommendation based on latent factor alignment
    Yu, Xu
    Hu, Qiang
    Li, Hui
    Du, Junwei
    Gao, Jia
    Sun, Lijun
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (05): : 3421 - 3432
  • [7] Social Recommendation with Cross-Domain Transferable Knowledge
    Jiang, Meng
    Cui, Peng
    Chen, Xumin
    Wang, Fei
    Zhu, Wenwu
    Yang, Shiqiang
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2015, 27 (11) : 3084 - 3097
  • [8] Cross-Domain Recommendation via Progressive Structural Alignment
    Zhao, Chuang
    Zhao, Hongke
    Li, Xiaomeng
    He, Ming
    Wang, Jiahui
    Fan, Jianping
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (06) : 2401 - 2415
  • [9] Cross-domain recommendation based on latent factor alignment
    Xu Yu
    Qiang Hu
    Hui Li
    Junwei Du
    Jia Gao
    Lijun Sun
    Neural Computing and Applications, 2022, 34 : 3421 - 3432
  • [10] Low-dimensional Alignment for Cross-Domain Recommendation
    Wang, Tianxin
    Zhuang, Fuzhen
    Zhang, Zhiqiang
    Wang, Daixin
    Zhou, Jun
    He, Qing
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 3508 - 3512