Two-way clustering for contingency tables: Maximizing a dependence measure

被引:0
|
作者
Bock, HH [1 ]
机构
[1] Univ Aachen, Inst Stat, D-52056 Aachen, Germany
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We consider the simultaneous clustering of the rows and columns of a contingency table such that the dependence between row clusters and column clusters is maximized in the sense of maximizing a general dependence measure. We use Csiszar's phi-divergence between the given two-way distribution and the independence case with the same margins. This includes the classical chi(2) measure, Kullback-Leibler's discriminating information, and variation distance. By using the general theory of 'convexity-based clustering criteria' (Bock 1992, 2002a, 2002b) we derive a k-means-like clustering algorithm that uses 'maximum support-plane partitions' (in terms of likelihood ratio vectors) in the same way as classical SSQ clustering uses 'minimum-distance partitions'.
引用
收藏
页码:143 / 154
页数:12
相关论文
共 50 条
  • [1] A nonparametric measure of local association for two-way contingency tables
    Hui, Francis K. C.
    Geenens, Gery
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2013, 68 : 98 - 110
  • [2] Generalized Proportional Reduction in Variation Measure for Two-Way Contingency Tables
    Sadao Tomizawa
    Takashi Seo
    Masaki Ebi
    Behaviormetrika, 1997, 24 (2) : 193 - 201
  • [3] On collapsing categories in two-way contingency tables
    Kateri, M
    Iliopoulos, G
    STATISTICS, 2003, 37 (05) : 443 - 455
  • [4] Unmasking outliers in two-way contingency tables
    Yick, John S.
    Lee, Andy H.
    Computational Statistics and Data Analysis, 1998, 29 (01): : 69 - 79
  • [5] Extension of generalized proportional reduction in variation measure for two-way contingency tables
    Momozaki T.
    Wada Y.
    Nakagawa T.
    Tomizawa S.
    Behaviormetrika, 2023, 50 (1) : 385 - 398
  • [6] Unmasking outliers in two-way contingency tables
    Yick, JS
    Lee, AH
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1998, 29 (01) : 69 - 79
  • [7] Disclosure analysis for two-way contingency tables
    Lu, Haibing
    Li, Yingjiu
    Wu, Xintao
    PRIVACY IN STATISTICAL DATABASES, PROCEEDINGS, 2006, 4302 : 57 - +
  • [8] The analysis of the data for two-way contingency tables
    Knapp, TR
    RESEARCH IN NURSING & HEALTH, 1999, 22 (03) : 263 - 268
  • [9] Geometric Mean Type of Proportional Reduction in Variation Measure for Two-Way Contingency Tables
    Urasaki, Wataru
    Wada, Yuki
    Nakagawa, Tomoyuki
    Tahata, Kouji
    Tomizawa, Sadao
    SANKHYA-SERIES B-APPLIED AND INTERDISCIPLINARY STATISTICS, 2024, 86 (01): : 139 - 163
  • [10] MEASURE OF DEPARTURE FROM MARGINAL POINT-SYMMETRY FOR TWO-WAY CONTINGENCY TABLES
    Yamamoto, K.
    Tahata, K.
    Suzuki, M.
    Tomizawa, S.
    STATISTICA, 2011, 71 (03) : 367 - 380