An adaptive residual local projection finite element method for the Navier-Stokes equations

被引:8
|
作者
Araya, Rodolfo [1 ,2 ]
Poza, Abner H. [3 ]
Valentin, Frederic [4 ]
机构
[1] Univ Concepcion, CI2MA, Concepcion, Chile
[2] Univ Concepcion, Dept Ingn Matemat, Concepcion, Chile
[3] Univ Catolica Santisima Concepcion, Fac Ingn, Concepcion, Chile
[4] Natl Lab Sci Comp LNCC, Dept Appl Math, BR-25651070 Petropolis, RJ, Brazil
关键词
Navier-Stokes equations; Stabilized finite element methods; A posteriori error estimates; POSTERIORI ERROR ESTIMATORS;
D O I
10.1007/s10444-014-9343-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work proposes and analyses an adaptive finite element scheme for the fully non-linear incompressible Navier-Stokes equations. A residual a posteriori error estimator is shown to be effective and reliable. The error estimator relies on a Residual Local Projection (RELP) finite element method for which we prove well-posedness under mild conditions. Several well-established numerical tests assess the theoretical results.
引用
收藏
页码:1093 / 1119
页数:27
相关论文
共 50 条
  • [1] An adaptive residual local projection finite element method for the Navier–Stokes equations
    Rodolfo Araya
    Abner H. Poza
    Frédéric Valentin
    Advances in Computational Mathematics, 2014, 40 : 1093 - 1119
  • [2] CONVERGENCE ANALYSIS OF A RESIDUAL LOCAL PROJECTION FINITE ELEMENT METHOD FOR THE NAVIER-STOKES EQUATIONS
    Araya, Rodolfo
    Barrenechea, Gabriel R.
    Poza, Abner H.
    Valentin, Frederic
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (02) : 669 - 699
  • [3] Local projection stabilized finite element method for Navier-Stokes equations
    Qin, Yan-mei
    Feng, Min-fu
    Luo, Kun
    Wu, Kai-teng
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2010, 31 (05) : 651 - 664
  • [4] Local projection stabilized finite element method for Navier-Stokes equations
    覃燕梅
    冯民富
    罗鲲
    吴开腾
    AppliedMathematicsandMechanics(EnglishEdition), 2010, 31 (05) : 651 - 664
  • [5] Local projection stabilized finite element method for Navier-Stokes equations
    Yan-mei Qin
    Min-fu Feng
    Kun Luo
    Kai-teng Wu
    Applied Mathematics and Mechanics, 2010, 31 : 651 - 664
  • [6] Adaptive Local Postprocessing Finite Element Method for the Navier-Stokes Equations
    Lina Song
    Yanren Hou
    Haibiao Zheng
    Journal of Scientific Computing, 2013, 55 : 255 - 267
  • [7] Adaptive Local Postprocessing Finite Element Method for the Navier-Stokes Equations
    Song, Lina
    Hou, Yanren
    Zheng, Haibiao
    JOURNAL OF SCIENTIFIC COMPUTING, 2013, 55 (02) : 255 - 267
  • [8] An adaptive finite element splitting method for the incompressible Navier-Stokes equations
    Selim, K.
    Logg, A.
    Larson, M. G.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 209 : 54 - 65
  • [9] The Prolonged Adaptive Multigrid method for finite element Navier-Stokes equations
    Wille, SO
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1996, 138 (1-4) : 227 - 271
  • [10] A multimesh finite element method for the Navier-Stokes equations based on projection methods
    Dokken, Jrgen S.
    Johansson, August
    Massing, Andre
    Funke, Simon W.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 368