Gradient recovery for singularly perturbed boundary value problems I: One-dimensional convection-diffusion

被引:9
|
作者
Roos, HG [1 ]
Linss, T [1 ]
机构
[1] Tech Univ Dresden, Inst Numer Math, D-01062 Dresden, Germany
关键词
convection-diffusion problems; finite element method; singular perturbation; superconvergence; gradient recovery; Shishkin-type mesh;
D O I
10.1007/s006070170033
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider a Galerkin finite element method that uses piecewise linears on a class of Shishkin-type meshes for a model singularly perturbed convection-diffusion problem. We pursue two approaches in constructing superconvergent approximations of the gradient. The first approach uses superconvergence points for the derivative, while the second one combines the consistency of a recovery operator with the superconvergence property of an interpolant. Numerical experiments support our theoretical results.
引用
收藏
页码:163 / 178
页数:16
相关论文
共 50 条