DOA Estimation Using Sparse Representation of Beamspace and Element-Space Covariance Differencing

被引:4
|
作者
Xu, Fujia [3 ]
Liu, Aifei [1 ,2 ,3 ]
Shi, Shengguo [1 ,2 ,3 ]
Li, Song [1 ,2 ,3 ]
Li, Ying [3 ]
机构
[1] Harbin Engn Univ, Acoust Sci & Technol Lab, Harbin 150001, Peoples R China
[2] Harbin Engn Univ, Minist Ind & Informat Technol, Key Lab Marine Informat Acquisit & Secur, Harbin 150001, Peoples R China
[3] Harbin Engn Univ, Coll Underwater Acoust Engn, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
Direction-of-arrival (DOA) estimation; Sparse representation; Covariance differencing; Matrix vectorization;
D O I
10.1007/s00034-021-01846-y
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In order to eliminate the effect of noise on the performance of the direction-of-arrival (DOA) estimation and reduce the computational complexity, a sparse representation (SR) DOA estimation method is proposed. The proposed method first utilizes the beamspace and element-space covariance differencing to eliminate noise. Afterward, it vectorizes the difference covariance matrix. In a sequence, it establishes a new SR model to complete DOA estimation. Compared to existing SR DOA estimation methods, the proposed method significantly reduces the computational complexity since the parameters to be solved in its SR cost function are regardless of the number of sources and the number of array elements. Simulation results show that in the case of the unknown number of sources and low signal-to-noise ratios (SNRs), the proposed method has high DOA resolution and estimation accuracy.
引用
收藏
页码:1596 / 1608
页数:13
相关论文
共 50 条
  • [1] DOA Estimation Using Sparse Representation of Beamspace and Element-Space Covariance Differencing
    Fujia Xu
    Aifei Liu
    Shengguo Shi
    Song Li
    Ying Li
    Circuits, Systems, and Signal Processing, 2022, 41 : 1596 - 1608
  • [2] DOA estimation in unknown colored noise using covariance differencing and sparse signal recovery
    TIAN Ye
    SUN Xiao-ying
    QIN Yu-di
    The Journal of China Universities of Posts and Telecommunications, 2014, (03) : 106 - 112
  • [3] DOA estimation in unknown colored noise using covariance differencing and sparse signal recovery
    TIAN Ye
    SUN Xiao-ying
    QIN Yu-di
    The Journal of China Universities of Posts and Telecommunications, 2014, 21 (03) : 106 - 112
  • [4] BEAMSPACE COVARIANCE-BASED DOA ESTIMATION
    Ferreira, Tadeu N.
    Netto, Sergio L.
    Diniz, Paulo S. R.
    2008 IEEE 9TH WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS, VOLS 1 AND 2, 2008, : 136 - 140
  • [5] Low complexity method for DOA estimation using array covariance matrix sparse representation
    He, Z. Q.
    Liu, Q. H.
    Jin, L. N.
    Ouyang, S.
    ELECTRONICS LETTERS, 2013, 49 (03) : 228 - 229
  • [6] SUBSPACE FITTING VIA SPARSE REPRESENTATION OF SIGNAL COVARIANCE FOR DOA ESTIMATION
    Zheng, Chundi
    Li, Gang
    Li, Youcai
    2016 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING PROCEEDINGS, 2016, : 3251 - 3255
  • [7] DOA Estimation Based on Sparse Covariance Vector Representation Using Two-Channel Receiver
    Jabbarian-Jahromi, Mohammad
    Mohammadpour-Aghdam, Karim
    Foudazi, Ghasem
    Mohammad-Salehi, Masoudreza
    2014 11TH EUROPEAN RADAR CONFERENCE (EURAD), 2014, : 261 - 264
  • [8] A Sparse Representation of Array Covariance Vectors for DOA Estimation with Unknown Mutual Coupling
    Meng, Dandan
    Wang, Xianpeng
    Huang, Mengxing
    Shen, Chong
    Guo, Yuehao
    2018 IEEE 18TH INTERNATIONAL CONFERENCE ON COMMUNICATION TECHNOLOGY (ICCT), 2018, : 1022 - 1026
  • [9] Fast Covariance Matrix Sparse Representation for DOA Estimation Based on Dynamic Dictionary
    Qian, Tong
    Xiang, Jin Zhi
    Cui, Wei
    PROCEEDINGS OF 2016 IEEE 13TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP 2016), 2016, : 138 - 143
  • [10] DOA Estimation Approach using Sparse Representation for Sparse Line Array
    Tang Bin
    Mo Lei
    Wu Honggang
    Peng Wei
    PROCEEDINGS OF 2015 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATION SOFTWARE AND NETWORKS (ICCSN), 2015, : 352 - 355