A Comparison of Lung Nodule Segmentation Algorithms: Methods and Results from a Multi-institutional Study

被引:58
|
作者
Kalpathy-Cramer, Jayashree [1 ,2 ]
Zhao, Binsheng [3 ]
Goldgof, Dmitry [4 ]
Gu, Yuhua [5 ,6 ]
Wang, Xingwei [7 ]
Yang, Hao [3 ]
Tan, Yongqiang [3 ]
Gillies, Robert [5 ,6 ]
Napel, Sandy [7 ]
机构
[1] Massachusetts Gen Hosp, Boston, MA 02114 USA
[2] Harvard Med Sch, Boston, MA USA
[3] Columbia Univ, Med Ctr, Dept Radiol, New York, NY USA
[4] Univ S Florida, Dept Comp Sci & Engn, Tampa, FL USA
[5] Univ S Florida, Coll Med, H Lee Moffitt Canc Ctr & Res Inst, Dept Canc Imaging, Tampa, FL 33612 USA
[6] Univ S Florida, Coll Med, H Lee Moffitt Canc Ctr & Res Inst, Dept Metab, Tampa, FL 33612 USA
[7] Stanford Univ, Sch Med, Dept Radiol, James H Clark Ctr S323 318 Campus Dr, Stanford, CA 94305 USA
关键词
Segmentation; Infrastructure; Lung cancer; Computed tomography; Quantitative imaging; CONCORDANCE CORRELATION-COEFFICIENT; DATABASE-CONSORTIUM LIDC; ASSESSING AGREEMENT; IMAGING BIOMARKERS; CT SCANS; CANCER; VARIABILITY; TUMORS; MANAGEMENT; VOLUME;
D O I
10.1007/s10278-016-9859-z
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Tumor volume estimation, as well as accurate and reproducible borders segmentation in medical images, are important in the diagnosis, staging, and assessment of response to cancer therapy. The goal of this study was to demonstrate the feasibility of a multi-institutional effort to assess the repeatability and reproducibility of nodule borders and volume estimate bias of computerized segmentation algorithms in CT images of lung cancer, and to provide results from such a study. The dataset used for this evaluation consisted of 52 tumors in 41 CT volumes (40 patient datasets and 1 dataset containing scans of 12 phantom nodules of known volume) from five collections available in The Cancer Imaging Archive. Three academic institutions developing lung nodule segmentation algorithms submitted results for three repeat runs for each of the nodules. We compared the performance of lung nodule segmentation algorithms by assessing several measurements of spatial overlap and volume measurement. Nodule sizes varied from 29 mu l to 66 ml and demonstrated a diversity of shapes. Agreement in spatial overlap of segmentations was significantly higher for multiple runs of the same algorithm than between segmentations generated by different algorithms (p < 0.05) and was significantly higher on the phantom dataset compared to the other datasets (p < 0.05). Algorithms differed significantly in the bias of the measured volumes of the phantom nodules (p < 0.05) underscoring the need for assessing performance on clinical data in addition to phantoms. Algorithms that most accurately estimated nodule volumes were not the most repeatable, emphasizing the need to evaluate both their accuracy and precision. There were considerable differences between algorithms, especially in a subset of heterogeneous nodules, underscoring the recommendation that the same software be used at all time points in longitudinal studies.
引用
收藏
页码:476 / 487
页数:12
相关论文
共 50 条
  • [1] A Comparison of Lung Nodule Segmentation Algorithms: Methods and Results from a Multi-institutional Study
    Jayashree Kalpathy-Cramer
    Binsheng Zhao
    Dmitry Goldgof
    Yuhua Gu
    Xingwei Wang
    Hao Yang
    Yongqiang Tan
    Robert Gillies
    Sandy Napel
    Journal of Digital Imaging, 2016, 29 : 476 - 487
  • [2] Comparison of Parameter Calculation Algorithms for DCE-MRI: Results From a Multi-Institutional Study
    Ger, R.
    Mohamed, A.
    Awan, M.
    Ding, Y.
    Li, K.
    Fave, X.
    Beers, A.
    Driscoll, B.
    Elhalawani, H.
    Hormuth, D.
    van Houdt, P.
    He, R.
    Zhou, S.
    Mathieu, K.
    Li, H.
    Coolens, C.
    Chung, C.
    Bankson, J.
    Huang, W.
    Wang, J.
    Sandulache, V.
    Lai, S.
    Howell, R.
    Stafford, R.
    Yankeelov, T.
    van der Heide, U.
    Frank, S.
    Barboriak, D.
    Hazle, J.
    Court, L.
    Kalpathy-Cramer, J.
    Fuller, C.
    MEDICAL PHYSICS, 2017, 44 (06) : 3097 - 3097
  • [3] Lung stereotactic ablative body radiotherapy: A large scale multi-institutional planning comparison for interpreting results of multi-institutional studies
    Giglioli, Francesca Romana
    Strigari, Lidia
    Ragona, Riccardo
    Borzi, Giuseppina R.
    Cagni, Elisabetta
    Carbonini, Claudia
    Clemente, Stefania
    Consorti, Rita
    El Gawhary, Randa
    Esposito, Marco
    Falco, Maria Daniela
    Fedele, David
    Fiandra, Christian
    Frassanito, Maria Cristina
    Landoni, Valeria
    Loi, Gianfranco
    Lorenzini, Elena
    Malisan, Maria Rosa
    Marino, Carmelo
    Menghi, Enrico
    Nardiello, Barbara
    Nigro, Roberta
    Oliviero, Caterina
    Pastore, Gabriella
    Quattrocchi, Mariagrazia
    Ruggieri, Ruggero
    Redaelli, Irene
    Reggiori, Giacomo
    Russo, Serenella
    Villaggi, Elena
    Casati, Marta
    Mancosu, Pietro
    PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2016, 32 (04): : 600 - 606
  • [4] Lung SABR: radiobiological multi planning comparison in a perspective of a multi-institutional study
    Giglioli, F. R.
    Ragona, R.
    Fiandra, C.
    Pastore, G.
    Landoni, V.
    Borzi, G.
    Menghi, E.
    Villaggi, E.
    Carbonini, C.
    Zani, M.
    Lorenzini, E.
    Malisan, M.
    Redaelli, I.
    Loi, G.
    Ravaglia, V.
    Fedele, D.
    Nigro, R.
    Nardiello, B.
    Frassanito, C.
    Falco, M. D.
    Cagni, E.
    Ruggieri, R.
    Consorti, R.
    El Gawhary, R.
    Mancosu, P.
    RADIOTHERAPY AND ONCOLOGY, 2015, 115 : S798 - S799
  • [5] Multi-institutional comparison of dosimetric parameters: Results from a Danish dosimetry protocol
    Beierholm, A. R.
    Behrens, C. F.
    Sibolt, P.
    Ronde, H. S.
    Biancardo, S. B. N.
    Thomsen, J. B.
    Nyvang, L.
    Riis, H. L.
    Helt-Hansen, J.
    Andersen, C. E.
    RADIOTHERAPY AND ONCOLOGY, 2014, 111 : S277 - S277
  • [6] Survival after Lung Metastasectomy from Esophageal Cancer: Results from a Multi-Institutional Database
    Yamauchi, Yoshikane
    Nakajima, Jun
    Mun, Mingyon
    Shintani, Yasushi
    Kuroda, Hiroaki
    Iwata, Takekazu
    Endo, Makoto
    Azuma, Yoko
    Chida, Masayuki
    Sakao, Yukinori
    Yoshino, Ichiro
    Ikeda, Norihiko
    Matsuguma, Haruhisa
    Funai, Kazuhito
    Hashimoto, Hiroshi
    Kawamura, Masafumi
    CANCERS, 2023, 15 (05)
  • [7] Open pelvic fractures - results of a multi-institutional study
    Mladenovic, Marko
    Stoiljkovic, Predrag
    Lalic, Ivica
    Harhaji, Vladimir
    Krstic, Andrija
    VOJNOSANITETSKI PREGLED, 2022, 79 (09) : 904 - 911
  • [8] Comparison of the efficacy of novel two covering methods for spontaneous pneumothorax: a multi-institutional study
    Oda, Risa
    Okuda, Katsuhiro
    Yamada, Takeshi
    Yukiue, Haruhiro
    Fukai, Ichiro
    Kawano, Osamu
    Matsui, Takuya
    Tatematsu, Tsutomu
    Yokota, Keisuke
    Nakanishi, Ryoichi
    BMJ OPEN RESPIRATORY RESEARCH, 2022, 9 (01)
  • [9] Promoting the cultivation and sustainability of mentoring ecosystems: results from a multi-institutional study
    Montgomery, Beronda L.
    Mondisa, Joi-Lynn
    Packard, Becky Wai-Ling
    MENTORING & TUTORING, 2024, 32 (05): : 596 - 617
  • [10] Impact of image quality on DIR performances: results from a multi-institutional study
    Loi, G.
    Fiandra, C.
    Lanzi, E.
    Fusella, M.
    Orlandini, L.
    Lucio, F.
    Strolin, S.
    Radici, L.
    Mezzenga, E.
    Roggio, A.
    Tana, L.
    Cagni, E.
    Savini, A.
    Garibaldi, C.
    RADIOTHERAPY AND ONCOLOGY, 2016, 119 : S901 - S901