Fermions without vierbeins in curved space-time

被引:33
|
作者
Weldon, HA [1 ]
机构
[1] W Virginia Univ, Dept Phys, Morgantown, WV 26506 USA
来源
PHYSICAL REVIEW D | 2001年 / 63卷 / 10期
关键词
D O I
10.1103/PhysRevD.63.104010
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A general formulation of spinor fields in Riemannian space-time is given without using vierbeins. The space-time dependence of the Dirac matrices required by the anticommutation relation {gamma (mu), gamma (nu)} = 2g(mu nu) determines the spin connection. The action is invariant under any local spin base transformations in the 32 parameter group G1(4,c) and not just under local Lorentz transformations. The Dirac equation and the energy-momentum tensor are computed from the action.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Fermions with electric dipole moment in curved space-time
    Araujo Filho, A. A.
    Hassanabadi, H.
    Reis, J. A. A. S.
    Lisboa-Santos, L.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2024, 39 (19N20):
  • [2] Quantum walks as massless Dirac fermions in curved space-time
    Di Molfetta, Giuseppe
    Brachet, M.
    Debbasch, Fabrice
    [J]. PHYSICAL REVIEW A, 2013, 88 (04):
  • [3] TUNNELING WITHOUT BARRIERS IN CURVED SPACE-TIME
    LEE, K
    [J]. NUCLEAR PHYSICS B, 1987, 282 (3-4) : 509 - 530
  • [4] Curved space, curved time, and curved space-time in Schwarzschild geodetic geometry
    Rafael T. Eufrasio
    Nicholas A. Mecholsky
    Lorenzo Resca
    [J]. General Relativity and Gravitation, 2018, 50
  • [5] Curved space, curved time, and curved space-time in Schwarzschild geodetic geometry
    Eufrasio, Rafael T.
    Mecholsky, Nicholas A.
    Resca, Lorenzo
    [J]. GENERAL RELATIVITY AND GRAVITATION, 2018, 50 (12)
  • [6] Covariant Wigner function approach to the Boltzmann equation for mixing fermions in curved space-time
    Yamamoto, K
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2003, 18 (24): : 4469 - 4484
  • [7] CURVED SPACE-TIME AND GRAVITATION
    BREHME, RW
    [J]. AMERICAN JOURNAL OF PHYSICS, 1965, 33 (10) : 875 - &
  • [8] ANYONS IN CURVED SPACE-TIME
    GHOSH, S
    MUKHOPADHYAY, S
    [J]. PHYSICAL REVIEW D, 1995, 51 (12): : 6843 - 6846
  • [9] PHOTONS IN CURVED SPACE-TIME
    CRAWFORD, DF
    [J]. AUSTRALIAN JOURNAL OF PHYSICS, 1987, 40 (03): : 449 - 457
  • [10] VORTICES IN CURVED SPACE-TIME
    EDELSTEIN, JD
    LOZANO, G
    SCHAPOSNIK, FA
    [J]. MODERN PHYSICS LETTERS A, 1993, 8 (38) : 3665 - 3672