An Architecture for Scientific Document Retrieval Using Textual and Math Entailment Modules

被引:0
|
作者
Pakray, Partha [1 ]
Sojka, Petr [1 ]
机构
[1] Masaryk Univ, Fac Informat, Bot 68a, Brno 60200, Czech Republic
关键词
math-aware information retrieval; semantic textual entailment; math entailment; distributional semantics; Gensim;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present an architecture for scientific document retrieval. An existing system for textual and math-ware retrieval Math Indexer and Searcher MIaS is designed for extensions by modules for textual and math-aware entailment. The goal is to increase quality of retrieval (precision and recall) by handling natural languge variations of expressing semantically the same in texts and/or formulae. Entailment modules are designed to use several, ordered layers of processing on lexical, syntactic and semantic levels using natural language processing tools adapted for handling tree structures like mathematical formulae. If these tools are not able to decide on the entailment, generic knowledge databases are used deploying distributional semantics methods and tools. It is shown that sole use of distributional semantics for semantic textual entailment decisions on sentence level is surprisingly good. Finally, further research plans to deploy results in the digital mathematical libraries are outlined.
引用
收藏
页码:107 / 117
页数:11
相关论文
共 50 条
  • [1] Design and realization of a modular architecture for textual entailment
    Pado, Sebastian
    Noh, Tae-Gil
    Stern, Asher
    Wang, Rui
    Zanoli, Roberto
    NATURAL LANGUAGE ENGINEERING, 2015, 21 (02) : 167 - 200
  • [2] A Distributed Architecture System for Recognizing Textual Entailment
    Iftene, Adrian
    Balahur-Dobrescu, Alexandra
    Matei, Daniel
    NINTH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING, PROCEEDINGS, 2007, : 219 - 226
  • [3] COLIEE 2020: Methods for Legal Document Retrieval and Entailment
    Rabelo, Juliano
    Kim, Mi-Young
    Goebel, Randy
    Yoshioka, Masaharu
    Kano, Yoshinobu
    Satoh, Ken
    NEW FRONTIERS IN ARTIFICIAL INTELLIGENCE, JSAI-ISAI 2020, 2021, 12758 : 196 - 210
  • [4] Answer Validation Using Textual Entailment
    Pakray, Partha
    Gelbukh, Alexander
    Bandyopadhyay, Sivaji
    COMPUTATIONAL LINGUISTICS AND INTELLIGENT TEXT PROCESSING, PT II, 2011, 6609 : 353 - +
  • [5] Scientific Text Entailment and a Textual-Entailment-based framework for cooking domain question answering
    Pathak, Amarnath
    Manna, Riyanka
    Pakray, Partha
    Das, Dipankar
    Gelbukh, Alexander
    Bandyopadhyay, Sivaji
    SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 2021, 46 (01):
  • [6] Scientific Text Entailment and a Textual-Entailment-based framework for cooking domain question answering
    Amarnath Pathak
    Riyanka Manna
    Partha Pakray
    Dipankar Das
    Alexander Gelbukh
    Sivaji Bandyopadhyay
    Sādhanā, 2021, 46
  • [7] Paraphrase Identification Using Textual Entailment Recognition
    Seethamol, S.
    Manju, K.
    2017 INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING, INSTRUMENTATION AND CONTROL TECHNOLOGIES (ICICICT), 2017, : 1071 - 1074
  • [8] COLIEE 2022 Summary: Methods for Legal Document Retrieval and Entailment
    Kim, Mi-Young
    Rabelo, Juliano
    Goebel, Randy
    Yoshioka, Masaharu
    Kano, Yoshinobu
    Satoh, Ken
    NEW FRONTIERS IN ARTIFICIAL INTELLIGENCE, JSAI-ISAI 2022 WORKSHOP, JURISIN 2022, JSAI 2022, 2023, 13859 : 51 - 67
  • [9] Recognizing textual entailment using multiple features
    Tan, Yongmei
    Yang, Xue
    He, Dezhu
    Journal of Information and Computational Science, 2014, 11 (01): : 181 - 187
  • [10] English Textual Entailment Recognition Using Capsules
    Zhu H.
    Tan Y.-M.
    Beijing Youdian Daxue Xuebao/Journal of Beijing University of Posts and Telecommunications, 2019, 42 (03): : 21 - 28