BackgroundHypothermia remains the best studied neuroprotectant. Despite extensive positive large and small animal data, side effects continue to limit human applications. Selective hypothermia is an efficient way of applying neuroprotection to the brain without the systemic complications of global hypothermia. However, optimal depth and duration of therapeutic hypothermia are still unknown. We analyzed a large animal cohort study of selective hypothermia for statistical relationships between depth or duration of hypothermia and the final stroke volume. MethodsA cohort of 30 swine stroke subjects provided the dataset for normothermic and selective hypothermic animals. Hypothermic parameters including duration, temperature nadir, and an Area Under the Curve measurement for 34 and 30 degrees C were correlated with the final infarct volumes measured by MRI and histology. ResultsBetween group comparisons continue to demonstrate a reduction in infarct volume with selective hypothermia. Histologically-derived infarct volumes were 1.2 mm(3) smaller in hypothermia-treated pigs (P = 0.04) and showed a similar, but non-significant reduction in MRI (P = 0.15). However, within the selective hypothermia group, more intense cooling, as measured through increased AUC 34 and decreased temperature nadir was associated with larger infarct proportions by MRI [Pearson's r = 0.48 (p = 0.05) and r = -0.59 (p = 0.01), respectively]. Reevaluation of the entire cohort with quadratic regression demonstrated a U-shaped pattern, wherein the average infarct proportion was minimized at 515 degree-minutes (AUC34) of cooling, and increased thereafter. In a single case of direct brain tissue oxygen monitoring during selective hypothermia, brain tissue oxygen strongly correlated with brain temperature reduction over the course of selective hypothermia to 23 degrees C. ConclusionsIn a large animal model of selective hypothermia applied to focal ischemia, there is a non-monotone relationship between duration and depth of hypothermia and stroke volume reduction. This suggests a limit to depth or duration of selective hypothermia for optimal neuroprotection. Further research is required to delineate more precise depth and duration limits for selective hypothermia.
机构:
Weil Inst Crit Care Med, Rancho Mirage, CA 92270 USAWeil Inst Crit Care Med, Rancho Mirage, CA 92270 USA
Weng, Yinlun
Sun, Shijie
论文数: 0引用数: 0
h-index: 0
机构:
Weil Inst Crit Care Med, Rancho Mirage, CA 92270 USA
Univ So Calif, Keck Sch Med, Los Angeles, CA 90089 USAWeil Inst Crit Care Med, Rancho Mirage, CA 92270 USA
机构:
Ajou Univ, Med Ctr, Dept Neurol, Sch Med, Suwon, South Korea
Ajou Univ, Med Ctr, Dept Biomed Sci, Sch Med, Suwon, South KoreaAjou Univ, Med Ctr, Dept Neurol, Sch Med, Suwon, South Korea
Hong, Ji Man
Choi, Eun Sil
论文数: 0引用数: 0
h-index: 0
机构:
Ajou Univ, Med Ctr, Dept Biomed Sci, Sch Med, Suwon, South KoreaAjou Univ, Med Ctr, Dept Neurol, Sch Med, Suwon, South Korea
Choi, Eun Sil
Park, So Young
论文数: 0引用数: 0
h-index: 0
机构:
Ajou Univ, Med Ctr, Dept Neurol, Sch Med, Suwon, South KoreaAjou Univ, Med Ctr, Dept Neurol, Sch Med, Suwon, South Korea