On irreducible operators in factor von Neumann algebras

被引:2
|
作者
Wen, Shilin [1 ]
Fang, Junsheng [1 ,2 ]
Shi, Rui [1 ]
机构
[1] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China
[2] Hebei Normal Univ, Coll Math & Informat Sci, Shijiazhuang 050024, Hebei, Peoples R China
关键词
Factor von Neumann algebras; Irreducible operators;
D O I
10.1016/j.laa.2018.12.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let M be a factor von Neumann algebra with separable predual and let T is an element of M. We call T an irreducible operator (relative to M) if W*(T) is an irreducible subfactor of M, i.e., W*(T)' boolean AND M = CI. In this note, we show that the set of irreducible operators in M is a dense G(delta) subset of M in the operator norm. This is a natural generalization of a theorem of Halmos. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:239 / 243
页数:5
相关论文
共 50 条