Extraction and Classification of Semantic Data from Twitter

被引:3
|
作者
Xavier, Clarissa Castella [1 ]
Souza, Marlo [2 ]
机构
[1] Univ Fed Rio Grande do Sul, Inst Informat, Porto Alegre, RS, Brazil
[2] Univ Fed Bahia UFBA, Inst Matemat & Estat, Salvador, BA, Brazil
关键词
Twitter; Semantic Extraction; Information Extraction; Text Analysis;
D O I
10.1145/3243082.3264606
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Twitter is a social network and microblogging service in which registered users read and post messages called Tweets. Tweets have a maximum of 280 characters and cover every conceivable subject, from simple activity updates and news coverage to opinions about arbitrary topics. In this way, Twitter emerges as a valuable data source to get information about what people think and feel about the most different subjects. In this context, this work presents different approaches for extracting and processing information from Twitter using Natural Language Processing (NLP) and Machine Learning techniques, examining tools and methods to collect and analyze semantic information from Tweets.
引用
收藏
页码:15 / 18
页数:4
相关论文
共 50 条
  • [1] Constructing a Semantic Graph with Depression Symptoms Extraction from Twitter
    Ma, Long
    Wang, Yan
    2019 16TH IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY - CIBCB 2019, 2019, : 356 - 360
  • [2] Traffic Information Extraction and Classification from Thai Twitter
    Klaithin, Supon
    Haruechaiyasak, Choochart
    2016 13TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER SCIENCE AND SOFTWARE ENGINEERING (JCSSE), 2016, : 82 - 87
  • [3] Traffic Condition Information Extraction From Twitter Data
    Herwanto, Guntur Budi
    Dewantara, Deny Prasetya
    2018 2ND INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING AND INFORMATICS (ICELTICS): INTELLIGENT DEVICES AND COMPUTING FOR ACCELERATING INDUSTRY 4.0 AND ENRICHING SMART SOCIETIES, 2018, : 95 - 100
  • [4] Unsupervised Crisis Information Extraction from Twitter Data
    Interdonato, Roberto
    Doucet, Antoine
    Guillaume, Jean-Loup
    2018 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING (ASONAM), 2018, : 579 - 580
  • [5] Jakarta Congestion Mapping And Classification From Twitter Data Extraction Using Tokenization And Naive Bayes Classifier
    Septianto, Gigih Rezki
    Mukti, Firman Fakhri
    Nasrun, Muhammad
    Gozali, Alfian Akbar
    2015 ASIA PACIFIC CONFERENCE ON MULTIMEDIA AND BROADCASTING, 2015, : 14 - 19
  • [6] Gender Classification of Twitter Data Based on Textual Meta-Attributes Extraction
    Batista Lopes Filho, Jose Ahirton
    Pasti, Rodrigo
    de Castro, Leandro Nunes
    NEW ADVANCES IN INFORMATION SYSTEMS AND TECHNOLOGIES, VOL 1, 2016, 444 : 1025 - 1034
  • [7] Semantic information generation from classification and information extraction
    Silva, TDS
    de Freitas, FLG
    Teske, RC
    Bittencourt, G
    WEB ENGINEERING, PROCEEDINGS, 2004, 3140 : 573 - 574
  • [8] SEMANTIC LOCATION EXTRACTION FROM CROWDSOURCED DATA
    Koswatte, S.
    Mcdougall, K.
    Liu, X.
    XXIII ISPRS CONGRESS, COMMISSION II, 2016, 41 (B2): : 543 - 547
  • [9] Wikipedia Based Semantic Smoothing for Twitter Sentiment Classification
    Torunoglu, Dilara
    Telseren, Gurkan
    Sagturk, Ozgun
    Ganiz, Murat C.
    2013 IEEE INTERNATIONAL SYMPOSIUM ON INNOVATIONS IN INTELLIGENT SYSTEMS AND APPLICATIONS (IEEE INISTA), 2013,
  • [10] Defining Semantic Meta-hashtags for Twitter Classification
    Costa, Joana
    Silva, Catarina
    Antunes, Mario
    Ribeiro, Bernardete
    ADAPTIVE AND NATURAL COMPUTING ALGORITHMS, ICANNGA 2013, 2013, 7824 : 226 - 235