Invariant object recognition by shape space analysis

被引:0
|
作者
Zhang, J [1 ]
Zhang, X [1 ]
Krim, H [1 ]
机构
[1] Univ Wisconsin, Dept Elect Engn & Comp Sci, Milwaukee, WI 53211 USA
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper describes a new approach to invariant object recognition. In this approach, an object is represented by a set of key points called landmarks. All possible translation, scaling, and rotation the object are placed into an equivalent class and associated to a single point in a complex projective space called the shape space. Object recognition is then achieved by distance calculations in this shape space. This approach is invariant to object translation, scaling, and rotation, and is computationally simple. Our experimental results also indicate that it is insensitive to noise and moderate occlusions.
引用
收藏
页码:581 / 585
页数:5
相关论文
共 50 条
  • [1] Shape space object recognition
    Zhang, X
    Zhang, J
    Walter, GG
    Krim, H
    [J]. AUTOMATIC TARGET RECOGNITION XI, 2001, 4379 : 432 - 443
  • [2] Invariant visual object recognition and shape processing in rats
    Zoccolan, Davide
    [J]. BEHAVIOURAL BRAIN RESEARCH, 2015, 285 : 10 - 33
  • [3] A genetic algorithm for affine invariant object shape recognition
    Tsang, PWM
    [J]. PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART I-JOURNAL OF SYSTEMS AND CONTROL ENGINEERING, 1997, 211 (05) : 385 - 392
  • [4] Color-invariant shape moments for object recognition
    Zhou, Q
    Celenk, M
    [J]. NONLINEAR IMAGE PROCESSING AND PATTERN ANALYSIS XII, 2001, 4304 : 7 - 17
  • [5] Simple Gabor feature space for invariant object recognition
    Kyrki, V
    Kamarainen, JK
    Kälviäinen, H
    [J]. PATTERN RECOGNITION LETTERS, 2004, 25 (03) : 311 - 318
  • [6] Scale-invariant shape features for recognition of object categories
    Jurie, F
    Schmid, C
    [J]. PROCEEDINGS OF THE 2004 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 2, 2004, : 90 - 96
  • [7] Invariant Object Recognition with Slow Feature Analysis
    Franzius, M.
    Wilbert, N.
    Wiskott, L.
    [J]. ARTIFICIAL NEURAL NETWORKS - ICANN 2008, PT I, 2008, 5163 : 961 - 970
  • [8] METRIC VERSUS VIEWPOINT INVARIANT SHAPE DIFFERENCES IN VISUAL OBJECT RECOGNITION
    COOPER, EE
    BIEDERMAN, I
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 1993, 34 (04) : 1080 - 1080
  • [9] INVARIANT MULTI-SCALE SHAPE DESCRIPTOR FOR OBJECT MATCHING AND RECOGNITION
    Xu, Haoran
    Yang, Jianyu
    Yuan, Junsong
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 644 - 648
  • [10] BINDING INVARIANT SHAPE DESCRIPTORS FOR OBJECT RECOGNITION - A NEURAL NET IMPLEMENTATION
    HUMMEL, JE
    BIEDERMAN, I
    [J]. BULLETIN OF THE PSYCHONOMIC SOCIETY, 1990, 28 (06) : 486 - 486