Analysis of mechanical behaviour and internal stability of granular materials using discrete element method

被引:24
|
作者
Hama, N. Abdoulaye [1 ]
Ouahbi, T. [1 ]
Taibi, S. [1 ]
Souli, H. [2 ]
Fleureau, J. M. [3 ]
Pantet, A. [1 ]
机构
[1] Le Havre Univ, UMR CNRS 6294, Lab Ondes & Milieux Complexes, F-76600 Le Havre, France
[2] Ecole Natl Ingn St Etienne, LTDS, UMR CNRS 8579, St Etienne, France
[3] Cent Supelec, UMR CNRS 8579, Lab MSS Mat, Chatenay Malabry, France
关键词
granular material; internal erosion; discrete element method; internal stability; PARTICLE SIMULATION; FLUIDIZED-BED; MODEL FORMULATIONS; EROSION; FLOW; STRENGTH; FAILURE; SHAPE;
D O I
10.1002/nag.2510
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
Granular materials like sand are widely used in civil engineering. They are composed of different sizes of grains, which generate a complex behaviour, difficult to assess experimentally. Internal instability of a granular material is its inability to prevent the loss of its fine particles under flow effect. It is geometrically possible if the fine particles can migrate through the pores of the coarse soil matrix and results in a change in its mechanical properties. This paper uses the three-dimensional Particle Flow Code (PFC3D/DEM) to study the stability/instability of granular materials and their mechanical behaviour after suffusion. Stability properties of widely graded materials are analysed by simulating the transport of smaller particles through the constrictions formed by the coarse particles under the effect of a downward flow with uniform pressure gradient. A sample made by an initially stable material according to the Kenney & Lau geometrical criterion was divided into five equal layers. The classification of these layers by this criterion before and after the test shows that even stable granular materials can lose fine particles and present local instability. The failure criterion of eroded samples, in which erosion is simulated by progressive removal of fine particles, evolves in an unexpected way. Internal friction angle increases with the initial porosity, the rate of lost fine particles and the average diameter D-50. Copyright (c) 2016 John Wiley & Sons, Ltd.
引用
收藏
页码:1712 / 1729
页数:18
相关论文
共 50 条
  • [1] Numerical analysis of internal stability of granular materials using discrete element method
    Hama, N. Abdoulaye
    Ouahbi, T.
    Taibi, S.
    Fleureau, J. M.
    Pantet, A.
    Souli, H.
    GEOMECHANICS FROM MICRO TO MACRO, VOLS I AND II, 2015, : 527 - 531
  • [2] The Effect of Triple Particle Sizes on the Mechanical Behaviour of Granular Materials using Discrete Element Method (DEM)
    Talafha, Muath S.
    Oldal, Istvan
    FME TRANSACTIONS, 2022, 50 (01): : 139 - 148
  • [3] Dynamic properties and liquefaction behaviour of granular materials using discrete element method
    Dinesh, SV
    Sitharam, TG
    Vinod, JS
    CURRENT SCIENCE, 2004, 87 (10): : 1379 - 1387
  • [4] Numerical simulation of liquefaction behaviour of granular materials using Discrete Element Method
    Sitharam, TG
    Dinesi, SV
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-EARTH AND PLANETARY SCIENCES, 2003, 112 (03): : 479 - 484
  • [5] Numerical simulation of liquefaction behaviour of granular materials using Discrete Element Method
    T. G. Sitharam
    S. V. Dinesh
    Journal of Earth System Science, 2003, 112 (3) : 479 - 484
  • [6] A Coupling Finite-Discrete Element Method for Mechanical Analysis of Granular Materials
    Xu, Wen-Jie
    Zhao, Yang
    PROCEEDINGS OF GEOSHANGHAI 2018 INTERNATIONAL CONFERENCE: FUNDAMENTALS OF SOIL BEHAVIOURS, 2018, : 901 - 910
  • [7] A virtual experiment technique on the elementary behaviour of granular materials with discrete element method
    Li, Xia
    Yu, Hai-Sui
    Li, Xiang-Song
    INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, 2013, 37 (01) : 75 - 96
  • [8] Discrete element modelling of cyclic behaviour of granular materials
    Sitharam, Thallak G.
    Geotechnical & Geological Engineering, 2003, Kluwer Academic Publishers (21) : 297 - 329
  • [9] Discrete element investigation of the asymptotic behaviour of granular materials
    Mašín, D. (masin@natur.cuni.cz), 1600, Springer Verlag
  • [10] Discrete element method in simulation of granular materials
    Kacianauskas, Rimantas
    Balevicius, Robertas
    Markauskas, Darius
    Maknickas, Algirdas
    IUTAM SYMPOSIUM ON MULTISCALE PROBLEMS IN MULTIBODY SYSTEM CONTACTS, 2007, 1 : 65 - +