Structural and energetic basis of infection by the filamentous bacteriophage IKe

被引:7
|
作者
Jakob, Roman P. [1 ,2 ]
Geitner, Anne-Juliane [1 ,2 ]
Weininger, Ulrich [3 ]
Balbach, Jochen [3 ]
Dobbek, Holger [4 ]
Schmid, Franz X. [1 ,2 ]
机构
[1] Univ Bayreuth, Lab Biochem, D-95440 Bayreuth, Germany
[2] Univ Bayreuth, Bayreuther Zentrum Mol Biowissensch, D-95440 Bayreuth, Germany
[3] Univ Halle Wittenberg, Zentrum Struktur & Dynam Prot MZP, Inst Phys Biophys & Mitteldeutsch, D-06120 Halle, Saale, Germany
[4] Humboldt Univ, Inst Biol Strukturbiol Biochem, D-10099 Berlin, Germany
关键词
STATE PROLYL ISOMERIZATION; N-TERMINAL DOMAINS; PHAGE-FD; ESCHERICHIA-COLI; CRYSTAL-STRUCTURE; HYDROGEN-EXCHANGE; NUCLEOTIDE-SEQUENCE; ADSORPTION PROTEIN; FOLDING KINETICS; PIII PROTEIN;
D O I
10.1111/j.1365-2958.2012.08079.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Filamentous phage use the two N-terminal domains of their gene-3-proteins to initiate infection of Escherichia coli. One domain interacts with a pilus, and then the other domain binds to TolA at the cell surface. In phage fd, these two domains are tightly associated with each other, which renders the phage robust but non-infectious, because the TolA binding site is inaccessible. Activation for infection requires partial unfolding, domain disassembly and prolyl isomerization. Phage IKe infects E. coli less efficiently than phage fd. Unlike in phage fd, the pilus- and TolA-binding domains of phage IKe are independent of each other in stability and folding. The site for TolA binding is thus always accessible, but the affinity is very low. The structures of the two domains, analysed by X-ray crystallography and by NMR spectroscopy, revealed a unique fold for the N-pilus-binding domain and a conserved fold for the TolA-binding domain. The absence of an activation mechanism as in phage fd and the low affinity for TolA probably explain the low infectivity of phage IKe. They also explain why, in a previous co-evolution experiment with a mixture of phage fd and phage IKe, all hybrid phage adopted the superior infection mechanism of phage fd.
引用
收藏
页码:1124 / 1138
页数:15
相关论文
共 50 条
  • [1] Cryo-electron microscopy structure of the filamentous bacteriophage IKe
    Xu, Jingwei
    Dayan, Nir
    Goldbourt, Amir
    Xiang, Ye
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (12) : 5493 - 5498
  • [2] INCI2 PLASMIDS SPECIFY SENSITIVITY TO FILAMENTOUS BACTERIOPHAGE-IKE
    BRADLEY, DE
    COETZEE, JN
    HEDGES, RW
    JOURNAL OF BACTERIOLOGY, 1983, 154 (01) : 505 - 507
  • [3] Structural and Energetic Basis of Allostery
    Hilser, Vincent J.
    Wrabl, James O.
    Motlagh, Hesam N.
    ANNUAL REVIEW OF BIOPHYSICS, VOL 41, 2012, 41 : 585 - 609
  • [4] STRUCTURAL TRANSITIONS IN FILAMENTOUS BACTERIOPHAGE-PF1
    SPECTHRIE, L
    GREENBERG, J
    GLUCKSMAN, MJ
    MAKOWSKI, L
    ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 1986, 463 : 399 - 402
  • [5] STRUCTURAL STUDIES OF FILAMENTOUS BACTERIOPHAGE M13
    TIRION, M
    MAKOWSKI, L
    BIOPHYSICAL JOURNAL, 1990, 57 (02) : A258 - A258
  • [6] ABSENCE OF A PILUS RECEPTOR FOR FILAMENTOUS PHAGE IKE
    BRODT, P
    LEGGETT, F
    IYER, R
    NATURE, 1974, 249 (5460) : 856 - 858
  • [7] Structural basis of bacteriophage lambda capsid maturation
    Wang, Chang
    Zeng, Jianwei
    Wang, Jiawei
    STRUCTURE, 2022, 30 (04) : 637 - 645.e3
  • [8] The structure of a filamentous bacteriophage
    Wang, Ying A.
    Yu, Xiong
    Overman, Stacy
    Tsuboi, Masamichi
    Thomas, George J., Jr.
    Egelman, Edward H.
    JOURNAL OF MOLECULAR BIOLOGY, 2006, 361 (02) : 209 - 215
  • [9] Surface Rigidity Change of Escherichia coli after Filamentous Bacteriophage Infection
    Chen, Yi-Yang
    Wu, Chien-Chen
    Hsu, Jye-Lin
    Peng, Hwei-Ling
    Chang, Hwan-You
    Yew, Tri-Rung
    LANGMUIR, 2009, 25 (08) : 4607 - 4614
  • [10] Structural organization of protein and DNA in filamentous bacteriophage M13
    Kishchenko, GP
    Makowski, L
    BIOPHYSICAL JOURNAL, 1996, 70 (02) : WAMC4 - WAMC4