Relation Detection for Indonesian Language using Deep Neural Network - Support Vector Machine

被引:0
|
作者
Hasudungan, Ramos Janoah [1 ]
Purwarianti, Ayu [1 ]
机构
[1] Prosa, Bandung, Indonesia
关键词
Relation detection; neural network; SVM;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Relation Detection is a task to determine whether two entities is related or not. In this paper, we employ neural network to do relation detection between two named entities for Indonesian Language. We used feature such as word embedding, position embedding, POS-Tag embedding, and character embedding. For the model, we divide the model into two parts: Front-part classifier (Convolutional layer or LSTM layer) and Back-part classifier (Dense layer or SVM). We did grid search method of neural network hyper parameter and SVM. We used 6000 Indonesian sentences for training process and 1,125 for testing. The best result is 0.8083 on F1-Score using Convolutional Layer as front-part and SVM as back-part.
引用
收藏
页码:290 / 296
页数:7
相关论文
共 50 条
  • [1] Spam Email Detection Using Deep Support Vector Machine, Support Vector Machine and Artificial Neural Network
    Roy, Sanjiban Sekhar
    Sinha, Abhishek
    Roy, Reetika
    Barna, Cornel
    Samui, Pijush
    [J]. SOFT COMPUTING APPLICATIONS, SOFA 2016, VOL 2, 2018, 634 : 162 - 174
  • [2] DETECTION OF MAMMOGRAPHIC CANCER USING SUPPORT VECTOR MACHINE AND DEEP NEURAL NETWORK
    Krishna, Timmana Hari
    Rajabhushnam, C.
    [J]. JOURNAL OF MECHANICS OF CONTINUA AND MATHEMATICAL SCIENCES, 2019, 14 (06): : 156 - 167
  • [3] Detection method of unlearned pattern using support vector machine in damage classification based on deep neural network
    Kohiyama, Masayuki
    Oka, Kazuya
    Yamashita, Takuzo
    [J]. STRUCTURAL CONTROL & HEALTH MONITORING, 2020, 27 (08):
  • [4] Defect detection method using deep convolutional neural network, support vector machine and template matching techniques
    Fusaomi Nagata
    Kenta Tokuno
    Kazuki Mitarai
    Akimasa Otsuka
    Takeshi Ikeda
    Hiroaki Ochi
    Keigo Watanabe
    Maki K. Habib
    [J]. Artificial Life and Robotics, 2019, 24 : 512 - 519
  • [5] Defect detection method using deep convolutional neural network, support vector machine and template matching techniques
    Nagata, Fusaomi
    Tokuno, Kenta
    Mitarai, Kazuki
    Otsuka, Akimasa
    Ikeda, Takeshi
    Ochi, Hiroaki
    Watanabe, Keigo
    Habib, Maki K.
    [J]. ARTIFICIAL LIFE AND ROBOTICS, 2019, 24 (04) : 512 - 519
  • [6] American Sign Language recognition using Support Vector Machine and Convolutional Neural Network
    Jain V.
    Jain A.
    Chauhan A.
    Kotla S.S.
    Gautam A.
    [J]. International Journal of Information Technology, 2021, 13 (3) : 1193 - 1200
  • [7] Bone fractures detection using support vector machine and error backpropagation neural network
    Bagaria, Rinisha
    Wadhwani, Sulochana
    Wadhwani, Arun Kumar
    [J]. OPTIK, 2021, 247
  • [8] Cancer Detection Using Aritifical Neural Network and Support Vector Machine: A Comparative Study
    Ubaidillah, Sharifah Hafizah Sy Ahmad
    Sallehuddin, Roselina
    Ali, Nor Azizah
    [J]. JURNAL TEKNOLOGI, 2013, 65 (01):
  • [9] An Indoor and Outdoor Positioning Using a Hybrid of Support Vector Machine and Deep Neural Network Algorithms
    Adege, Abebe Belay
    Lin, Hsin-Piao
    Tarekegn, Getaneh Berie
    Munaye, Yirga Yayeh
    Yen, Lei
    [J]. JOURNAL OF SENSORS, 2018, 2018
  • [10] Rude-Words Detection for Indonesian Speech Using Support Vector Machine
    Novitasari, Sashi
    Lestari, Dessi Puji
    Sakti, Sakriani
    Purwarianti, Ayu
    [J]. 2018 INTERNATIONAL CONFERENCE ON ASIAN LANGUAGE PROCESSING (IALP), 2018, : 19 - 24