Reverse genetics systems for SARS-CoV-2

被引:17
|
作者
Wang, Wenhao
Peng, Xiaoxue
Jin, Yunyun
Pan, Ji-An [1 ,2 ]
Guo, Deyin [1 ,2 ]
机构
[1] Sun Yat Sen Univ, Ctr Infect & Immun Study, 66 Gongchang Rd, Shenzhen 518107, Guangdong, Peoples R China
[2] Sun Yat Sen Univ, Mol Canc Res Ctr, Sch Med, 66 Gongchang Rd,Shenzhen Campus, Shenzhen 518107, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
BAC; CPER; reverse genetics systems; SARS-CoV-2; TAR; LENGTH INFECTIOUS CDNA; TRANSFORMATION-ASSOCIATED RECOMBINATION; RNA RECOMBINATION; IN-VITRO; CORONAVIRUS; CLONE; DNA; GENOME; CONSTRUCTION; SEQUENCE;
D O I
10.1002/jmv.27738
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The ongoing pandemic of coronavirus disease 2019 (COVID-19) has caused severe public health crises and heavy economic losses. Limited knowledge about this deadly virus impairs our capacity to set up a toolkit against it. Thus, more studies on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) biology are urgently needed. Reverse genetics systems, including viral infectious clones and replicons, are powerful platforms for viral research projects, spanning many aspects such as the rescues of wild-type or mutant viral particles, the investigation of viral replication mechanism, the characterization of viral protein functions, and the studies on viral pathogenesis and antiviral drug development. The operations on viral infectious clones are strictly limited in the Biosafety Level 3 (BSL3) facilities, which are insufficient, especially during the pandemic. In contrast, the operation on the noninfectious replicon can be performed in Biosafety Level 2 (BSL2) facilities, which are widely available. After the outbreak of COVID-19, many reverse genetics systems for SARS-CoV-2, including infectious clones and replicons are developed and given plenty of options for researchers to pick up according to the requirement of their research works. In this review, we summarize the available reverse genetics systems for SARS-CoV-2, by highlighting the features of these systems, and provide a quick guide for researchers, especially those without ample experience in operating viral reverse genetics systems.
引用
收藏
页码:3017 / 3031
页数:15
相关论文
共 50 条
  • [1] Reverse genetics systems for SARS-CoV-2: Development and applications
    Cai, Hou-Li
    Huang, Yao-Wei
    [J]. VIROLOGICA SINICA, 2023, 38 (06) : 837 - 850
  • [2] Versatile SARS-CoV-2 Reverse-Genetics Systems for the Study of Antiviral Resistance and Replication
    Fahnoe, Ulrik
    Pham, Long V.
    Fernandez-Antunez, Carlota
    Costa, Rui
    Rivera-Rangel, Lizandro Rene
    Galli, Andrea
    Feng, Shan
    Mikkelsen, Lotte S.
    Gottwein, Judith M.
    Scheel, Troels K. H.
    Ramirez, Santseharay
    Bukh, Jens
    [J]. VIRUSES-BASEL, 2022, 14 (02):
  • [3] Reverse genetic systems of SARS-CoV-2 for antiviral research
    Kurhade, Chaitanya
    Xie, Xuping
    Shi, Pei-Yong
    [J]. ANTIVIRAL RESEARCH, 2023, 210
  • [4] Interferon antagonism by SARS-CoV-2: a functional study using reverse genetics
    Schroeder, Simon
    Pott, Fabian
    Niemeyer, Daniela
    Veith, Talitha
    Richter, Anja
    Muth, Doreen
    Goffinet, Christine
    Mueller, Marcel A.
    Drosten, Christian
    [J]. LANCET MICROBE, 2021, 2 (05): : E210 - E218
  • [5] SARS-CoV-2 Reverse Genetics Reveals a Variable Infection Gradient in the Respiratory Tract
    Hou, Yixuan J.
    Okuda, Kenichi
    Edwards, Caitlin E.
    Martinez, David R.
    Asakura, Takanori
    Dinnon, Kenneth H., III
    Kato, Takafumi
    Lee, Rhianna E.
    Yount, Boyd L.
    Mascenik, Teresa M.
    Chen, Gang
    Olivier, Kenneth N.
    Ghio, Andrew
    Tse, Longping, V
    Leist, Sarah R.
    Gralinski, Lisa E.
    Schafer, Alexandra
    Dang, Hong
    Gilmore, Rodney
    Nakano, Satoko
    Sun, Ling
    Fulcher, M. Leslie
    Livraghi-Butrico, Alessandra
    Nicely, Nathan, I
    Cameron, Mark
    Cameron, Cheryl
    Kelvin, David J.
    de Silva, Aravinda
    Margolis, David M.
    Markmann, Alena
    Bartelt, Luther
    Zumwalt, Ross
    Martinez, Fernando J.
    Salvatore, Steven P.
    Borczuk, Alain
    Tata, Purushothama R.
    Sontake, Vishwaraj
    Kimple, Adam
    Jaspers, Ilona
    O'Neal, Wanda K.
    Randell, Scott H.
    Boucher, Richard C.
    Baric, Ralph S.
    [J]. CELL, 2020, 182 (02) : 429 - +
  • [6] The reverse zoonotic potential of SARS-CoV-2
    Milich, Krista M.
    Morse, Stephen S.
    [J]. HELIYON, 2024, 10 (12)
  • [7] The accuracy of reverse genetics systems for SARS-CoV-2: Circular polymerase extension reaction versus bacterial artificial chromosome
    Furusawa, Yuri
    Yamayoshi, Seiya
    Kawaoka, Yoshihiro
    [J]. INFLUENZA AND OTHER RESPIRATORY VIRUSES, 2023, 17 (03)
  • [8] Establishment of a reverse genetics system for SARS-CoV-2 using circular polymerase extension reaction
    Torii, Shiho
    Ono, Chikako
    Suzuki, Rigel
    Morioka, Yuhei
    Anzai, Itsuki
    Fauzyah, Yuzy
    Maeda, Yusuke
    Kamitani, Wataru
    Fukuhara, Takasuke
    Matsuura, Yoshiharu
    [J]. CELL REPORTS, 2021, 35 (03):
  • [9] Using Genetics To Dissect SARS-CoV-2 Infection
    Brest, Patrick
    Mograbi, Baharia
    Hofman, Paul
    Milano, Gerard
    [J]. TRENDS IN GENETICS, 2021, 37 (03) : 203 - 204
  • [10] Zoonotic and Reverse Zoonotic Transmissibility of SARS-CoV-2
    Goraichuk, Iryna, V
    Arefiev, Vasiliy
    Stegniy, Borys T.
    Gerilovych, Anton P.
    [J]. VIRUS RESEARCH, 2021, 302