Determination of Optimum Vulcanization Process Parameters Using Taguchi GRA for Reducing Quality Loss

被引:1
|
作者
Yudha, Fajar Alam [1 ]
Soepangkat, Bobby Oedy Pramoedyo [2 ]
Ratnasari, Vita [3 ]
Suef, Mokhamad [4 ]
Norcahyo, Rachmadi [2 ]
机构
[1] Inst Teknol Sepuluh Nopember, Technol Management Dept, Surabaya 60111, Indonesia
[2] Inst Teknol Sepuluh Nopember, Mech Engn Dept, Surabaya 60111, Indonesia
[3] Inst Teknol Sepuluh Nopember, Stat Dept, Surabaya 60111, Indonesia
[4] Inst Teknol Sepuluh Nopember, Ind Engn Dept, Surabaya 60111, Indonesia
关键词
GREY RELATIONAL ANALYSIS; EDM PROCESS; OPTIMIZATION;
D O I
10.1063/1.5112398
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Two of the several critical to quality characteristics (CTQs) of rubber outsole are tensile strength and slip resistance. The rubber outsole vulcanization process has three processing parameters, namely mold temperature, mold pressure, and holding time. In order to obtain the maximum tensile strength and slip resistance, it is necessary to conduct multi-objective optimization to determine the correct levels of the vulcanization processing parameters. In the present study, an integration of grey relational analysis and Taguchi method was implemented using an experimental design of L-9 Orthogonal Array with 3 (three) replications for each experimental unit. The experimental results showed that the multi-objective optimization successfully enhanced tensile strength and slip resistance in the rubber outsole vulcanization process. The maximum tensile strength and slip resistance could be obtained by setting mold temperature at 155 degrees C, mold pressure at 90 bar, and holding time at 2 minutes. The optimized process parameters could reduce the cost of quality loss by 29.79%.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Determination of optimum process parameters using Taguchi's approach to improve the quality of sls parts
    Reddy, T. A. Janardhan
    Kumar, Y. Ravi
    Rao, C. S. P.
    PROCEEDINGS OF THE 17TH IASTED INTERNATIONAL CONFERENCE ON MODELLING AND SIMULATION, 2006, : 228 - +
  • [2] Multi Objective Optimization of Vulcanization Process Parameters for Reducing Quality Loss Cost Based on BPNN-PSO Method
    Aji, Hardimuko Seto
    Soepangkat, Bobby Oedy Pramoedyo
    Santosa, Budi
    Norcahyo, Rachmadi
    EXPLORING RESOURCES, PROCESS AND DESIGN FOR SUSTAINABLE URBAN DEVELOPMENT, 2019, 2114
  • [3] Evaluation of Optimum Turning Process of Process Parameters Using DOE and PCA Taguchi Method
    Madhavi, S. Krishna
    Sreeramulu, D.
    Venkatesh, M.
    MATERIALS TODAY-PROCEEDINGS, 2017, 4 (02) : 1937 - 1946
  • [4] Determining the Optimum Process Parameters by Asymmetric Quality Loss Function
    Chen, Chung-Ho
    Chou, Chao-Yu
    MATEMATIKA, 2006, 22 (02) : 129 - 135
  • [5] Determination of optimum process conditions for solvent extraction of thorium using Taguchi method
    M. Eskandari Nasab
    A. Sam
    S. Alamdar Milani
    Journal of Radioanalytical and Nuclear Chemistry, 2011, 287 : 239 - 245
  • [6] Determination of optimum process conditions for solvent extraction of thorium using Taguchi method
    Nasab, M. Eskandari
    Sam, A.
    Milani, S. Alamdar
    JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY, 2011, 287 (01) : 239 - 245
  • [7] Set the optimum process parameters based on asymmetric quality loss function
    Chen, CH
    Chou, CY
    QUALITY & QUANTITY, 2004, 38 (01) : 75 - 79
  • [8] Set the optimum process parameters based on asymmetric quality loss function
    Chen C.-H.
    Chou C.-Y.
    Quality and Quantity, 2004, 38 (1) : 75 - 79
  • [9] Determining Economic Manufacturing Quantity, the Optimum Process Parameters Based on Taguchi Quadratic Quality Loss Function Under Rectifying Inspection Plan
    Al-Me'raj, Ismail
    Cinar, Yahya
    Duffuaa, S. O.
    2011 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND ENGINEERING MANAGEMENT (IEEM), 2011, : 1348 - 1353
  • [10] Determining the optimum green sand casting process parameters using Taguchi's method
    Kumaravadivel, A.
    Natarajan, U.
    Ilamparithi, C.
    JOURNAL OF INDUSTRIAL AND PRODUCTION ENGINEERING, 2012, 29 (02) : 148 - 162