Knowledge-aware recommendation model with dynamic co-attention and attribute regularize

被引:3
|
作者
Yin, Guisheng [1 ]
Chen, Fukun [1 ]
Dong, Yuxin [1 ]
Li, Gesu [1 ]
机构
[1] Harbin Engn Univ, Sch Comp Sci & Technol, Harbin 150001, Heilongjiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Knowledge-aware; Recommender system; Dynamic co-attention; Attribute regularizer;
D O I
10.1007/s10489-021-02598-7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
As important information provided by recommender systems, knowledge graphs are widely applied in computer science and many other fields. The recommender system performance can be significantly improved by leveraging the knowledge graph between the user and item. Various recommendation approaches have been proposed based on the knowledge graph in recent years; however, most of the existing models only apply item-level user representations or attention mechanisms to users and items in the same way and ignore the fact that user and item attributes are significantly different. Hence, these models are not an effectively exploited attribute information and circumscribe the further improvement of recommender performance. In this paper, a novel approach of dynamic co-attention with an attribute regularizer (DCAR) for a knowledge-aware recommender system is proposed to explore the latent connections between the user level and item level. The model dynamically adjusts the dynamic co-attention mechanism through the attribute similarity between the target user and the candidate item. Specifically, an attribute regularizer between user and item is designed to improve the quality of attribute embedding. Experimental results on two realistic datasets show that our proposed model can significantly improve recommender system effectiveness and represents an advancement beyond the compared deep models.
引用
收藏
页码:3807 / 3824
页数:18
相关论文
共 50 条
  • [1] Knowledge-aware recommendation model with dynamic co-attention and attribute regularize
    Guisheng Yin
    Fukun Chen
    Yuxin Dong
    Gesu Li
    Applied Intelligence, 2022, 52 : 3807 - 3824
  • [2] A Knowledge-Enhanced Recommendation Model with Attribute-Level Co-Attention
    Yang, Deqing
    Song, Zengchun
    Xue, Lvxin
    Xiao, Yanghua
    PROCEEDINGS OF THE 43RD INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '20), 2020, : 1909 - 1912
  • [3] Knowledge-aware hierarchical attention network for recommendation
    Fang, Min
    Liu, Lu
    Ye, Yuxin
    Zhu, Beibei
    Han, Jiayu
    Peng, Tao
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 43 (06) : 7545 - 7557
  • [4] AKUPM: Attention-Enhanced Knowledge-Aware User Preference Model for Recommendation
    Tang, Xiaoli
    Wang, Tengyun
    Yang, Haizhi
    Song, Hengjie
    KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, : 1891 - 1899
  • [5] Personalized Dynamic Knowledge-Aware Recommendation with Hybrid Explanations
    Sun, Hao
    Wu, Zijian
    Cui, Yue
    Deng, Liwei
    Zhao, Yan
    Zheng, Kai
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS (DASFAA 2021), PT III, 2021, 12683 : 148 - 164
  • [6] Bidirectional Knowledge-Aware Attention Network over Knowledge Graph for Explainable Recommendation
    Lyu, Yanxia
    Su, Guorui
    Wang, Jianghan
    Xing, Ye
    2022 5TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND NATURAL LANGUAGE PROCESSING, MLNLP 2022, 2022, : 170 - 174
  • [7] A Static and Dynamic Co-attention Network for Social Recommendation
    Bian, Fan
    Yan, Lingyu
    Gao, Rong
    Zheng, Kunpeng
    Zhang, Yucheng
    Yang, Jie
    PROCEEDINGS OF THE THE 11TH IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT DATA ACQUISITION AND ADVANCED COMPUTING SYSTEMS: TECHNOLOGY AND APPLICATIONS (IDAACS'2021), VOL 1, 2021, : 196 - 201
  • [8] Leveraging Hyperbolic Dynamic Neural Networks for Knowledge-Aware Recommendation
    Zhang, Yihao
    Li, Kaibei
    Zhu, Junlin
    Yuan, Meng
    Huang, Yonghao
    Li, Xiaokang
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2024, 11 (03): : 4396 - 4411
  • [9] KSGAN: Knowledge-aware subgraph attention network for scholarly community recommendation
    Lu, Qi
    Du, Wei
    Xu, Wei
    Ma, Jian
    INFORMATION SYSTEMS, 2023, 119
  • [10] Knowledge-Aware Topological Networks for Recommendation
    Pan, Jian
    Zhang, Zhao
    Zhuang, Fuzhen
    Yang, Jingyuan
    Shi, Zhiping
    KNOWLEDGE GRAPH AND SEMANTIC COMPUTING: KNOWLEDGE GRAPH EMPOWERS THE DIGITAL ECONOMY, CCKS 2022, 2022, 1669 : 189 - 201