Classification using Dirichlet priors when the training data are mislabeled

被引:0
|
作者
Lynch, RS [1 ]
Willett, PK [1 ]
机构
[1] Naval Undersea Warfare Ctr, Newport, RI 02841 USA
关键词
D O I
10.1109/ICASSP.1999.761387
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
The average probability of error is used to demonstrate performance of a Bayesian classification test (referred to as the Combined Bayes Test (CBT)) given the training data of each class are mislabeled. The CBT combines the information in discrete training and test data to infer symbol probabilities, where a uniform Dirichlet prior (i.e., a noninformative prior of complete ignorance) is assumed for all classes. Using this prior it is shown how classification performance degrades when mislabeling exists in the training data, and this occurs with st severity that depends on the value of the mislabeling probabilities. However, an increase in the mislabeling probabilities are also shown to cause an increase in M* (i.e., the best quantization fineness). Further, even when the actual mislabeling probabilities are known by the CBT it is not possible to achieve the classification performance obtainable without mislabeling.
引用
收藏
页码:2973 / 2976
页数:4
相关论文
共 50 条
  • [1] Classification using Dirichlet priors when the training data are mislabeled
    Lynch Jr., Robert S.
    Willett, Peter K.
    ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, 1999, 5 : 2973 - 2976
  • [2] Classification with Incomplete Data Using Dirichlet Process Priors
    Wang, Chunping
    Liao, Xuejun
    Carin, Lawrence
    Dunson, David B.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2010, 11 : 3269 - 3311
  • [3] Classification with incomplete data using dirichlet process priors
    Wang, Chunping
    Liao, Xuejun
    Carin, Lawrence
    Dunson, David B.
    Journal of Machine Learning Research, 2010, 11 : 3269 - 3311
  • [4] Bayesian classification using a noninformative prior and mislabeled training data
    Lynch Jr., Robert S.
    Willett, Peter K.
    Journal of the Franklin Institute, 1999, 336 (05): : 809 - 819
  • [5] Bayesian classification using a noninformative prior and mislabeled training data
    Lynch, RS
    Willett, PK
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1999, 336 (05): : 809 - 819
  • [6] Generative Supervised Classification Using Dirichlet Process Priors
    Davy, Manuel
    Tourneret, Jean-Yves
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2010, 32 (10) : 1781 - 1794
  • [7] Adaptive Bayesian classification using noninformative Dirichlet priors
    Lynch, RS
    Willett, PK
    SMC 2000 CONFERENCE PROCEEDINGS: 2000 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN & CYBERNETICS, VOL 1-5, 2000, : 2812 - 2815
  • [8] A Survey of mislabeled training data detection techniques for pattern classification
    Guan, Donghai
    Yuan, Weiwei
    IETE TECHNICAL REVIEW, 2013, 30 (06) : 524 - 530
  • [9] Identifying mislabeled training data
    Brodley, CE
    Friedl, MA
    JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 1999, 11 : 131 - 167
  • [10] Bayesian classification and feature reduction using uniform Dirichlet priors
    Lynch, RS
    Willett, PK
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2003, 33 (03): : 448 - 464