Accelerated sparse nonnegative matrix factorization for unsupervised feature learning

被引:3
|
作者
Xie, Ting [1 ,2 ]
Zhang, Hua [1 ]
Liu, Ruihua [3 ]
Xiao, Hanguang [3 ]
机构
[1] Chongqing Univ Technol, Coll Sci, Chongqing 400054, Peoples R China
[2] Univ Texas Dallas, Dept Math Sci, Dallas, TX 75080 USA
[3] Chongqing Univ Technol, Coll Artificial Intelligence, Chongqing 400054, Peoples R China
关键词
Nonnegative matrix factorization; Clustering; Sparse; CONSTRAINED LEAST-SQUARES; MEAN SHIFT; ALGORITHM;
D O I
10.1016/j.patrec.2022.01.020
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Sparse Nonnegative Matrix Factorization (SNMF) is a fundamental unsupervised representation learning technique, and it represents low-dimensional features of a data set and lends itself to a clustering interpretation. However, the model and algorithm of SNMF have some shortcomings. In this work, we created a clustering method by improving the SNMF model and its Alternating Direction Multiplier Method acceleration algorithm. A novel, fast and closed-form iterative solution is proposed for SNMF with implicit sparse constraints which are L- 1 and L-2 norms of the coefficient and basis matrixes, respectively. A low-dimensional feature space is also proposed as result of the closed-form iteration formats of each sub-problem obtained by variable splitting. In addition, the convergence points of the presented iterative algorithms are stationary points of the model. Finally, numerical experiments show that the improved algorithm is comparable to the sate-of-the-art methods in data clustering. (C) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页码:46 / 52
页数:7
相关论文
共 50 条
  • [1] Robust latent nonnegative matrix factorization with automatic sparse reconstruction for unsupervised feature extraction
    Wan, Minghua
    Cai, Mingxiu
    Yang, Zhangjing
    Tan, Hai
    Yang, Guowei
    Tang, Mingwei
    [J]. INFORMATION SCIENCES, 2023, 648
  • [2] Bayesian Group Sparse Learning for Nonnegative Matrix Factorization
    Chien, Jen-Tzung
    Hsieh, Hsin-Lung
    [J]. 13TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION 2012 (INTERSPEECH 2012), VOLS 1-3, 2012, : 1550 - 1553
  • [3] Nonnegative Matrix Factorization with Integrated Graph and Feature Learning
    Peng, Chong
    Kang, Zhao
    Hu, Yunhong
    Cheng, Jie
    Cheng, Qiang
    [J]. ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2017, 8 (03)
  • [4] Robust Unsupervised Feature Selection by Nonnegative Sparse Subspace Learning
    Zheng, Wei
    Yan, Hui
    Yang, Jian
    Yang, Jingyu
    [J]. 2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2016, : 3615 - 3620
  • [5] Robust unsupervised feature selection by nonnegative sparse subspace learning
    Zheng, Wei
    Yan, Hui
    Yang, Jian
    [J]. NEUROCOMPUTING, 2019, 334 : 156 - 171
  • [6] Sparse Deep Nonnegative Matrix Factorization
    Guo, Zhenxing
    Zhang, Shihua
    [J]. BIG DATA MINING AND ANALYTICS, 2020, 3 (01) : 13 - 28
  • [7] Binary Sparse Nonnegative Matrix Factorization
    Yuan, Yuan
    Li, Xuelong
    Pang, Yanwei
    Lu, Xin
    Tao, Dacheng
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2009, 19 (05) : 772 - 777
  • [8] DISCRIMINANT SPARSE NONNEGATIVE MATRIX FACTORIZATION
    Zhi, Ruicong
    Ruan, Qiuqi
    [J]. ICME: 2009 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOLS 1-3, 2009, : 570 - 573
  • [9] Discriminative deep semi-nonnegative matrix factorization network with similarity maximization for unsupervised feature learning
    Wang, Wei
    Chen, Feiyu
    Ge, Yongxin
    Huang, Sheng
    Zhang, Xiaohong
    Yang, Dan
    [J]. PATTERN RECOGNITION LETTERS, 2021, 149 : 157 - 163
  • [10] Extended sparse nonnegative matrix factorization
    Stadlthanner, K
    Theis, FJ
    Puntonet, CG
    Lang, EW
    [J]. COMPUTATIONAL INTELLIGENCE AND BIOINSPIRED SYSTEMS, PROCEEDINGS, 2005, 3512 : 249 - 256