A point compression method for elliptic curves defined over GF(2n)

被引:0
|
作者
King, B [1 ]
机构
[1] Indiana Univ Purdue Univ, Purdue Sch Engn, Indianapolis, IN 46202 USA
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Here we describe new tools to be used in fields of the form Gf (2(n)), that help describe properties of elliptic curves defined over GF(2(n)). Further, utilizing these tools we describe a new elliptic curve,point compression method, which provides the most efficient use of bandwidth whenever the elliptic curve is defined by y(2) + xy = x(3) + a(2)x(2) + a(6) and the trace of a(2) is zero.
引用
收藏
页码:333 / 345
页数:13
相关论文
共 50 条
  • [1] A new addition formula for elliptic curves over GF(2n)
    Al-Daoud, E
    Mahmod, R
    Rushdan, M
    Kilicman, A
    IEEE TRANSACTIONS ON COMPUTERS, 2002, 51 (08) : 972 - 975
  • [2] Finding secure elliptic curves over GF(2n) and their base points
    Liu, Shengli
    Zheng, Dong
    Wang, Yumin
    Dianzi Kexue Xuekan/Journal of Electronics, 2000, 22 (05): : 824 - 830
  • [3] Key Generation in Elliptic Curve Cryptosystems over GF(2n)
    Lee, Tai-Chi
    INTERNATIONAL MULTICONFERENCE OF ENGINEERS AND COMPUTER SCIENTISTS, IMECS 2012, VOL I, 2012, : 326 - 331
  • [4] Serial multiplier architectures over GF(2n) for elliptic curve cryptosystems
    Batina, L
    Mentens, N
    Ors, SB
    Preneel, B
    MELECON 2004: PROCEEDINGS OF THE 12TH IEEE MEDITERRANEAN ELECTROTECHNICAL CONFERENCE, VOLS 1-3, 2004, : 779 - 782
  • [5] QUARTICS OVER GF(2N)
    LEONARD, PA
    WILLIAMS, KS
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 36 (02) : 347 - 350
  • [6] An x-Coordinate Point Compression Method for Elliptic Curves over Fp
    Dudeanu, Alina
    Oancea, George-Razvan
    Iftene, Sorin
    12TH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING (SYNASC 2010), 2011, : 65 - 71
  • [7] A reconfigurable system on chip implementation for elliptic curve cryptography over GF(2n)
    Ernst, M
    Jung, M
    Madlener, F
    Huss, S
    Blümel, R
    CRYPTOGRAPHIC HARDWARE AND EMBEDDED SYSTEMS - CHES 2002, 2002, 2523 : 381 - 399
  • [8] Evolutionary hardware architecture for division in elliptic curve cryptosystems over GF(2n)
    Jeon, JC
    Kim, KW
    Yoo, KY
    ADVANCES IN NATURAL COMPUTATION, PT 3, PROCEEDINGS, 2005, 3612 : 348 - 355
  • [9] A tile assembly model to calculate point-multiplication on conic curves over finite field GF(2n)
    Li, Yongnan
    2020 IEEE INTL SYMP ON PARALLEL & DISTRIBUTED PROCESSING WITH APPLICATIONS, INTL CONF ON BIG DATA & CLOUD COMPUTING, INTL SYMP SOCIAL COMPUTING & NETWORKING, INTL CONF ON SUSTAINABLE COMPUTING & COMMUNICATIONS (ISPA/BDCLOUD/SOCIALCOM/SUSTAINCOM 2020), 2020, : 41 - 48
  • [10] EXPONENTIAL SUMS OVER GF(2N)
    WILLIAMS, KS
    PACIFIC JOURNAL OF MATHEMATICS, 1972, 40 (02) : 511 - &