Orthogonal polynomials and the finite Toda lattice

被引:2
|
作者
Kasman, A
机构
关键词
D O I
10.1063/1.531840
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The choice of a finitely supported distribution is viewed as a degenerate bilinear form on the polynomials in the spectral parameter z and the matrix representing multiplication by z in terms of an orthogonal basis is constructed. It is then shown that the same induced time dependence for finitely supported distributions which gives the ith KP flow under the dual isomorphism induces the ith flow of the Toda hierarchy on the matrix. The corresponding solution is an N particle, finite, nonperiodic Toda solution where N is the cardinality of the support of c plus the sum of the orders of the highest derivative taken at each point. (C) 1997 American Institute of Physics.
引用
下载
收藏
页码:247 / 254
页数:8
相关论文
共 50 条
  • [1] Asymptotics of discrete orthogonal polynomials and the continuum limit of the Toda lattice
    Aptekarev, AI
    Van Assche, W
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (48): : 10627 - 10637
  • [2] On Toda lattices and orthogonal polynomials
    Peherstorfer, F
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 133 (1-2) : 519 - 534
  • [3] On the relation between the full Kostant-Toda lattice and multiple orthogonal polynomials
    Barrios Rolania, D.
    Branquinho, A.
    Moreno, A. Foulquie
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 377 (01) : 228 - 238
  • [4] Direct and inverse problems for the generalized relativistic Toda lattice and the connection with general orthogonal polynomials
    Gago-Alonso, A.
    Santiago-Moreno, L.
    Pineiro-Diaz, L. R.
    INVERSE PROBLEMS, 2008, 24 (02)
  • [5] Extended Relativistic Toda Lattice, L-Orthogonal Polynomials and Associated Lax Pair
    Cleonice F. Bracciali
    Jairo S. Silva
    A. Sri Ranga
    Acta Applicandae Mathematicae, 2019, 164 : 137 - 154
  • [6] Extended Relativistic Toda Lattice, L-Orthogonal Polynomials and Associated Lax Pair
    Bracciali, Cleonice F.
    Silva, Jairo S.
    Ranga, A. Sri
    ACTA APPLICANDAE MATHEMATICAE, 2019, 164 (01) : 137 - 154
  • [7] Direct and inverse spectral transform for the relativistic Toda lattice and the connection with Laurent orthogonal polynomials
    Coussement, J
    Kuijlaars, ABJ
    Van Assche, W
    INVERSE PROBLEMS, 2002, 18 (03) : 923 - 942
  • [8] Toda chain, Stieltjes function, and orthogonal polynomials
    F. Peherstorfer
    V. P. Spiridonov
    A. S. Zhedanov
    Theoretical and Mathematical Physics, 2007, 151 : 505 - 528
  • [9] Orthogonal polynomials, Toda lattices and Painleve equations
    Van Assche, Walter
    PHYSICA D-NONLINEAR PHENOMENA, 2022, 434
  • [10] Toda chain, Stieltjes function, and orthogonal polynomials
    Peherstorfer, F.
    Spiridonov, V. P.
    Zhedanov, A. S.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2007, 151 (01) : 505 - 528