GENERAL FRACTIONAL-ORDER ANOMALOUS DIFFUSION WITH NON-SINGULAR POWER-LAW KERNEL

被引:27
|
作者
Yang, Xiao-Jun [1 ,2 ]
Srivastava, Hari Mohan [3 ,4 ]
Torres, Delfim F. M. [5 ]
Debbouche, Arnar [5 ,6 ]
机构
[1] China Univ Min & Technol, State Key Lab Geomech & Deep Underground Engn, Xuzhou, Peoples R China
[2] China Univ Min & Technol, Sch Mech & Civil Engn, Xuzhou, Peoples R China
[3] Univ Victoria, Dept Math & Stat, Victoria, BC, Canada
[4] China Med Univ, Taichung, Taiwan
[5] Univ Aveiro, Dept Math, Ctr Res & Dev Math & Applicat CIDMA, Aveiro, Portugal
[6] Guelma Univ, Dept Math, Guelma, Algeria
来源
THERMAL SCIENCE | 2017年 / 21卷
关键词
general fractional derivative with non-singular power-law kernel; Riemann-Liouville general fractional derivative; anomalous diffusion; Liouville-Caputo general fractional derivative; MODELS; FLOW;
D O I
10.2298/TSCI170610193Y
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this paper, we investigate general fractional derivatives with a non-singular power-law kernel. The anomalous diffusion models with non-singular power-law kernel are discussed in detail. The results are efficient for modelling the anomalous behaviors within the frameworks of the Riemann-Lionville and Liouville-Caputo general fractional derivatives.
引用
收藏
页码:S1 / S9
页数:9
相关论文
共 50 条
  • [1] GENERAL FRACTIONAL CALCULUS IN NON-SINGULAR POWER-LAW KERNEL APPLIED TO MODEL ANOMALOUS DIFFUSION PHENOMENA IN HEAT TRANSFER PROBLEMS
    Gao, Feng
    [J]. THERMAL SCIENCE, 2017, 21 : S11 - S18
  • [2] Analysis of the Time Fractional-Order Coupled Burgers Equations with Non-Singular Kernel Operators
    Aljahdaly, Noufe H.
    Agarwal, Ravi P.
    Shah, Rasool
    Botmart, Thongchai
    [J]. MATHEMATICS, 2021, 9 (18)
  • [3] Analysis of the fractional diffusion equations with fractional derivative of non-singular kernel
    Al-Refai, Mohammed
    Abdeljawad, Thabet
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [4] Analysis of the fractional diffusion equations with fractional derivative of non-singular kernel
    Mohammed Al-Refai
    Thabet Abdeljawad
    [J]. Advances in Difference Equations, 2017
  • [5] A fractional-order multi-vaccination model for COVID-19 with non-singular kernel
    Omame, A.
    Okuonghae, D.
    Nwajeri, Ugochukwu K.
    Onyenegecha, Chibueze P.
    [J]. ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (08) : 6089 - 6104
  • [6] Fractional Diffusion Equation under Singular and Non-Singular Kernel and Its Stability
    Gabrick, Enrique C.
    Protachevicz, Paulo R.
    Lenzi, Ervin K.
    Sayari, Elaheh
    Trobia, Jose
    Lenzi, Marcelo K.
    Borges, Fernando S.
    Caldas, Ibere L.
    Batista, Antonio M.
    [J]. FRACTAL AND FRACTIONAL, 2023, 7 (11)
  • [7] A fast and high-order numerical method for nonlinear fractional-order differential equations with non-singular kernel
    Lee, Seyeon
    Lee, Junseo
    Kim, Hyunju
    Jang, Bongsoo
    [J]. APPLIED NUMERICAL MATHEMATICS, 2021, 163 : 57 - 76
  • [8] Fractional-order formulation of power-law and exponential distributions
    Alexopoulos, A.
    Weinberg, G. V.
    [J]. PHYSICS LETTERS A, 2014, 378 (34) : 2478 - 2481
  • [9] Numerical analysis of fractional-order Whitham-Broer-Kaup equations with non-singular kernel operators
    Al-Sawalha, M. Mossa
    Ababneh, Osama Y.
    Shah, Rasool
    Khan, Amjad
    Nonlaopon, Kamsing
    [J]. AIMS MATHEMATICS, 2023, 8 (01): : 2308 - 2336
  • [10] On the fractional order model for HPV and Syphilis using non-singular kernel
    Nwajeri, U. K.
    Panle, A. B.
    Omame, A.
    Obi, Martin C.
    Onyenegecha, C. P.
    [J]. RESULTS IN PHYSICS, 2022, 37