Is Infidelity Predictable? Using Explainable Machine Learning to Identify the Most Important Predictors of Infidelity

被引:9
|
作者
Vowels, Laura M. [1 ]
Vowels, Matthew J. [2 ]
Mark, Kristen P. [3 ]
机构
[1] Univ Lausanne, Dept Psychol, CH-1015 Lausanne, Switzerland
[2] Univ Surrey, Ctr Comp Vis Speech & Signal Proc CVSSP, Guildford, Surrey, England
[3] Univ Minnesota, Dept Family Med & Community Hlth, Minneapolis, MN 55455 USA
关键词
RELATIONSHIP QUALITY; GENDER; SEX; PERCEPTIONS; BEHAVIORS; ATTITUDES; ONLINE; SCALE;
D O I
10.1080/00224499.2021.1967846
中图分类号
B849 [应用心理学];
学科分类号
040203 ;
摘要
Infidelity can be a disruptive event in a romantic relationship with a devastating impact on both partners' well-being. Thus, there are benefits to identifying factors that can explain or predict infidelity, but prior research has not utilized methods that would provide the relative importance of each predictor. We used a machine learning algorithm, random forest (a type of interpretable highly non-linear decision tree), to predict in-person and online infidelity across two studies (one individual and one dyadic, N = 1,295). We also used a game theoretic explanation technique, Shapley values, which allowed us to estimate the effect size of each predictor variable on infidelity. The present study showed that infidelity was somewhat predictable overall and interpersonal factors such as relationship satisfaction, love, desire, and relationship length were the most predictive of online and in person infidelity. The results suggest that addressing relationship difficulties early in the relationship may help prevent infidelity.
引用
收藏
页码:224 / 237
页数:14
相关论文
共 50 条
  • [1] Uncovering the Most Important Factors for Predicting Sexual Desire Using Explainable Machine Learning
    Vowels, Laura M.
    Vowels, Matthew J.
    Mark, Kristen P.
    [J]. JOURNAL OF SEXUAL MEDICINE, 2021, 18 (07): : 1198 - 1216
  • [2] Interpretable machine learning to identify important predictors of birth weight: A prospective cohort study
    Liu, Zheng
    Han, Na
    Su, Tao
    Ji, Yuelong
    Bao, Heling
    Zhou, Shuang
    Luo, Shusheng
    Wang, Hui
    Liu, Jue
    Wang, Hai-Jun
    [J]. FRONTIERS IN PEDIATRICS, 2022, 10
  • [3] Using explainable machine learning and fitbit data to investigate predictors of adolescent obesity
    Kiss, Orsolya
    Baker, Fiona C.
    Palovics, Robert
    Dooley, Erin E.
    Pettee Gabriel, Kelley
    Nagata, Jason M.
    [J]. SCIENTIFIC REPORTS, 2024, 14 (01):
  • [4] Using Machine Learning to Identify the Most Critical Factors Affecting Maintenance of Tunnels
    Ahmed, Muaz O.
    Khalef, Ramy
    Ali, Gasser G.
    El-Adaway, Islam H.
    [J]. COMPUTING IN CIVIL ENGINEERING 2021, 2022, : 1433 - 1440
  • [5] Using machine learning to identify the most at-risk students in physics classes
    Yang, Jie
    DeVore, Seth
    Hewagallage, Dona
    Miller, Paul
    Ryan, Qing X.
    Stewart, John
    [J]. PHYSICAL REVIEW PHYSICS EDUCATION RESEARCH, 2020, 16 (02):
  • [6] Using explainable machine learning to identify patients at risk of reattendance at discharge from emergency departments
    Chmiel, F. P.
    Burns, D. K.
    Azor, M.
    Borca, F.
    Boniface, M. J.
    Zlatev, Z. D.
    White, N. M.
    Daniels, T. W., V
    Kiuber, M.
    [J]. SCIENTIFIC REPORTS, 2021, 11 (01)
  • [7] Using explainable machine learning to identify patients at risk of reattendance at discharge from emergency departments
    F. P. Chmiel
    D. K. Burns
    M. Azor
    F. Borca
    M. J. Boniface
    Z. D. Zlatev
    N. M. White
    T. W. V. Daniels
    M. Kiuber
    [J]. Scientific Reports, 11
  • [8] USING MACHINE LEARNING TO IDENTIFY IMPORTANT PARAMETERS FOR FLOW-INDUCED VIBRATION
    Ma, Leixin
    Resvanis, Themistocles L.
    Vandiver, J. Kim
    [J]. PROCEEDINGS OF THE ASME 39TH INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, OMAE2020, VOL 4, 2020,
  • [9] Using machine learning to identify important predictors of COVID-19 infection prevention behaviors during the early phase of the pandemic
    Van Lissa, Caspar J.
    Stroebe, Wolfgang
    VanDellen, Michelle R.
    Leander, N. Pontus
    Agostini, Maximilian
    Draws, Tim
    Grygoryshyn, Andrii
    Gutzgow, Ben
    Kreienkamp, Jannis
    Vetter, Clara S.
    Abakoumkin, Georgios
    Khaiyom, Jamilah Hanum Abdul
    Ahmedi, Vjolica
    Akkas, Handan
    Almenara, Carlos A.
    Atta, Mohsin
    Bagci, Sabahat Cigdem
    Basel, Sima
    Kida, Edona Berisha
    Bernardo, Allan B., I
    Buttrick, Nicholas R.
    Chobthamkit, Phatthanakit
    Choi, Hoon-Seok
    Cristea, Mioara
    Csaba, Sara
    Damnjanovic, Kaja
    Danyliuk, Ivan
    Dash, Arobindu
    Di Santo, Daniela
    Douglas, Karen M.
    Enea, Violeta
    Faller, Daiane Gracieli
    Fitzsimons, Gavan J.
    Gheorghiu, Alexandra
    Gomez, Angel
    Hamaidia, Ali
    Han, Qing
    Helmy, Mai
    Hudiyana, Joevarian
    Jeronimus, Bertus F.
    Jiang, Ding-Yu
    Jovanovic, Veljko
    Kamenov, Zeljka
    Kende, Anna
    Keng, Shian-Ling
    Tra Thi Thanh Kieu
    Koc, Yasin
    Kovyazina, Kamila
    Kozytska, Inna
    Krause, Joshua
    [J]. PATTERNS, 2022, 3 (04):
  • [10] Predictable Etch Model Using Machine Learning
    Kim, Youngchang
    Jung, Sungwook
    Kwak, Doohwan
    Liubich, Vlad
    Fenger, Germain
    [J]. OPTICAL MICROLITHOGRAPHY XXXII, 2019, 10961