Multivariate Discriminant and Iterated Resultant

被引:1
|
作者
Han, Jing Jun [1 ,2 ]
机构
[1] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
[2] Peking Univ, Beijing Int Ctr Math Res, Beijing 100871, Peoples R China
关键词
Cylindrical algebraic decomposition; semi-definiteness; polynomial; resultant; multivariate discriminant; IMPROVED PROJECTION;
D O I
10.1007/s10114-016-5586-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the relationship between iterated resultant and multivariate discriminant. We show that, for generic form f(x(n)) with even degree d, if the polynomial is squarefreed after each iteration, the multivariate discriminant Delta(f) is a factor of the squarefreed iterated resultant. In fact, we find a factor Hp(f, [x(1),..., x(n)]) of the squarefreed iterated resultant, and prove that the multivariate discriminant Delta(f) is a factor of Hp(f, [x(1),..., x(n)]). Moreover, we conjecture that Hp(f, [x(1),..., x(n)]) = Delta(f) holds for generic form f, and show that it is true for generic trivariate form f(x,y,z).
引用
收藏
页码:659 / 667
页数:9
相关论文
共 50 条
  • [1] Multivariate Discriminant and Iterated Resultant
    Jing Jun HAN
    Acta Mathematica Sinica,English Series, 2016, (06) : 659 - 667
  • [2] Multivariate discriminant and iterated resultant
    Jing Jun Han
    Acta Mathematica Sinica, English Series, 2016, 32 : 659 - 667
  • [3] Multivariate Discriminant and Iterated Resultant
    Jing Jun HAN
    Acta Mathematica Sinica, 2016, 32 (06) : 659 - 667
  • [4] RESULTANT, DISCRIMINANT
    Demazure, Michel
    ENSEIGNEMENT MATHEMATIQUE, 2012, 58 (3-4): : 333 - 373
  • [5] On the complexity of the multivariate resultant
    Grenet, Bruno
    Koiran, Pascal
    Portier, Natacha
    JOURNAL OF COMPLEXITY, 2013, 29 (02) : 142 - 157
  • [6] NEWTON POLYTOPES OF THE CLASSICAL RESULTANT AND DISCRIMINANT
    GELFAND, IM
    KAPRANOV, MM
    ZELEVINSKY, AV
    ADVANCES IN MATHEMATICS, 1990, 84 (02) : 237 - 254
  • [7] Explicit formulas for the multivariate resultant
    D'Andrea, C
    Dickenstein, A
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2001, 164 (1-2) : 59 - 86
  • [8] The Resultant, the Discriminant, and the Derivative of Generalized Fibonacci Polynomials
    Florez, Rigoberto
    Higuita, Robinson A.
    Ramirez, Alexander
    JOURNAL OF INTEGER SEQUENCES, 2019, 22 (04)
  • [9] MULTIVARIATE LAW OF THE ITERATED LOGARITHM
    BERNING, JA
    ANNALS OF PROBABILITY, 1979, 7 (06): : 980 - 988
  • [10] A certified numerical algorithm for the topology of resultant and discriminant curves
    Imbach, Remi
    Moroz, Guillaume
    Pouget, Marc
    JOURNAL OF SYMBOLIC COMPUTATION, 2017, 80 : 285 - 306