Inorganic halide perovskite materials and solar cells

被引:22
|
作者
Zhang, Cuiling [1 ]
Arumugam, Gowri Manohari [1 ]
Liu, Chong [1 ]
Hu, Jinlong [1 ]
Yang, Yuzhao [1 ]
Schropp, Ruud E. I. [1 ]
Mai, Yaohua [1 ,2 ]
机构
[1] Jinan Univ, Coll Informat Sci & Technol, Inst New Energy Technol, Guangzhou 510632, Guangdong, Peoples R China
[2] Hebei Univ, Coll Phys Sci & Technol, Inst Photovolta, Baoding 071002, Peoples R China
来源
APL MATERIALS | 2019年 / 7卷 / 12期
关键词
CESIUM LEAD IODIDE; HIGH-PERFORMANCE; HIGH-EFFICIENCY; ALPHA-CSPBI3; PEROVSKITE; STABILIZED EFFICIENCY; ENHANCED PERFORMANCE; CHARGE EXTRACTION; CRYSTAL-STRUCTURE; QUANTUM DOTS; THIN-FILMS;
D O I
10.1063/1.5117306
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Organic-inorganic perovskite solar cells (PSCs) have achieved an inspiring third-party-certificated power conversion efficiency (PCE) of 25.2%, which is comparable with commercialized silicon (Si) and copper indium gallium selenium solar cells. However, their notorious instability, including their deterioration at elevated temperature, is still a serious issue in commercial applications. This thermal instability can be ascribed to the high volatility and reactivity of organic compounds. As a result, solar cells based on inorganic perovskite materials have drawn tremendous attention, owing to their excellent stability against thermal stress. In the last few years, PSCs based on inorganic perovskite materials have seen an astonishing development. In particular, CsPbI3 and CsPbI2Br PSCs demonstrated outstanding PCEs, exceeding 18% and 16%, respectively. In this review, we systematically discuss the properties of inorganic perovskite materials and the device configuration of inorganic PSCs as well as review the progress in PCE and stability. Encouragingly, all-inorganic PSCs, in which all functional layers are inorganic, provide a feasible approach to overcome the thermal instability issue of traditional organic-inorganic PSCs, leading to new perspectives toward commercial production of PSCs.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Research progress on organic-inorganic halide perovskite materials and solar cells
    Ono, Luis K.
    Qi, Yabing
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2018, 51 (09)
  • [2] Inorganic Halide Perovskite Solar Cells: Progress and Challenges
    Tian, Jingjing
    Xue, Qifan
    Yao, Qin
    Li, Ning
    Brabec, Christoph J.
    Yip, Hin-Lap
    ADVANCED ENERGY MATERIALS, 2020, 10 (23)
  • [3] Untapped Potentials of Inorganic Metal Halide Perovskite Solar Cells
    Ho-Baillie, Anita
    Zhang, Meng
    Lau, Cho Fai Jonathan
    Ma, Fa-Jun
    Huang, Shujuan
    JOULE, 2019, 3 (04) : 938 - 955
  • [4] Scanning Probe Microscopy Applied to Organic-Inorganic Halide Perovskite Materials and Solar Cells
    Hieulle, Jeremy
    Stecker, Collin
    Ohmann, Robin
    Ono, Luis K.
    Qi, Yabing
    SMALL METHODS, 2018, 2 (01):
  • [5] Halide Perovskite Materials for Solar Cells: a Theoretical Review
    Huang Yang
    Sun Qing-De
    Xu Wen
    He Yao
    Yin Wan-Jian
    ACTA PHYSICO-CHIMICA SINICA, 2017, 33 (09) : 1730 - 1751
  • [6] Halide perovskite materials for solar cells: a theoretical review
    Yin, Wan-Jian
    Yang, Ji-Hui
    Kang, Joongoo
    Yan, Yanfa
    Wei, Su-Huai
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (17) : 8926 - 8942
  • [7] Atomistic insight into the device engineering of inorganic halide perovskite solar cells
    Iqbal, Safdar
    Duan, Xinlei
    Wang, Jian
    Liu, Linhua
    Yang, Jia-Yue
    RESULTS IN ENGINEERING, 2024, 24
  • [8] Mixed-Halide Inorganic Perovskite Solar Cells: Opportunities and Challenges
    Yang, Ming
    Wang, Huaxin
    Cai, Wensi
    Zang, Zhigang
    ADVANCED OPTICAL MATERIALS, 2023, 11 (20):
  • [9] Mixed-Halide Inorganic Perovskite Solar Cells: Opportunities and Challenges
    Yang, Ming
    Wang, Huaxin
    Cai, Wensi
    Zang, Zhigang
    ADVANCED OPTICAL MATERIALS, 2023,
  • [10] Inorganic Electron Transport Materials in Perovskite Solar Cells
    Lin, Liangyou
    Jones, Timothy W.
    Yang, Terry Chien-Jen
    Duffy, Noel W.
    Li, Jinhua
    Zhao, Li
    Chi, Bo
    Wang, Xianbao
    Wilson, Gregory J.
    ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (05)