Optimal Rates of Linear Convergence of Relaxed Alternating Projections and Generalized Douglas-Rachford Methods for Two Subspaces

被引:31
|
作者
Bauschke, Heinz H. [1 ]
Bello Cruz, J. Y. [2 ]
Nghia, Tran T. A. [3 ]
Pha, Hung M. [4 ]
Wang, Xianfu [1 ]
机构
[1] Univ British Columbia, Math, Kelowna, BC V1V 1V7, Canada
[2] Univ Fed Goias, IME, BR-74001970 Goiania, Go, Brazil
[3] Oakland Univ, Math & Stat, Rochester, MI 48309 USA
[4] Univ Massachusetts Lowell, Dept Math Sci, 265 Riverside St Olney Hall 428, Lowell, MA 01854 USA
基金
加拿大自然科学与工程研究理事会;
关键词
Convergent and semi-convergent matrix; Friedrichs angle; Generalized Douglas-Rachford method; Linear convergence; Principal angle; Relaxed alternating projection method; CONVEX FEASIBILITY PROBLEMS; ITERATIVE METHODS; SINGULAR MATRICES; ALGORITHMS; OPERATORS; SYSTEMS; ANGLES;
D O I
10.1007/s11075-015-0085-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We systematically study the optimal linear convergence rates for several relaxed alternating projection methods and the generalized Douglas-Rachford splitting methods for finding the projection on the intersection of two subspaces. Our analysis is based on a study on the linear convergence rates of the powers of matrices. We show that the optimal linear convergence rate of powers of matrices is attained if and only if all subdominant eigenvalues of the matrix are semisimple. For the convenience of computation, a nonlinear approach to the partially relaxed alternating projection method with at least the same optimal convergence rate is also provided. Numerical experiments validate our convergence analysis.
引用
收藏
页码:33 / 76
页数:44
相关论文
共 38 条
  • [1] Optimal Rates of Linear Convergence of Relaxed Alternating Projections and Generalized Douglas-Rachford Methods for Two Subspaces
    Heinz H. Bauschke
    J. Y. Bello Cruz
    Tran T. A. Nghia
    Hung M. Pha
    Xianfu Wang
    Numerical Algorithms, 2016, 73 : 33 - 76
  • [2] CONVERGENCE ANALYSIS OF THE RELAXED DOUGLAS-RACHFORD ALGORITHM
    Luke, D. Russell
    Martins, Anna-Lena
    SIAM JOURNAL ON OPTIMIZATION, 2020, 30 (01) : 542 - 584
  • [3] Linear convergence of the generalized Douglas-Rachford algorithm for feasibility problems
    Dao, Minh N.
    Phan, Hung M.
    JOURNAL OF GLOBAL OPTIMIZATION, 2018, 72 (03) : 443 - 474
  • [4] The rate of linear convergence of the Douglas-Rachford algorithm for subspaces is the cosine of the Friedrichs angle
    Bauschke, Heinz H.
    Cruz, J. Y. Bello
    Nghia, Tran T. A.
    Phan, Hung M.
    Wang, Xianfu
    JOURNAL OF APPROXIMATION THEORY, 2014, 185 : 63 - 79
  • [5] Alternating Projections and Douglas-Rachford for Sparse Affine Feasibility
    Hesse, Robert
    Luke, D. Russell
    Neumann, Patrick
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (18) : 4868 - 4881
  • [6] Linear convergence of the Douglas-Rachford method for two closed sets
    Phan, Hung M.
    OPTIMIZATION, 2016, 65 (02) : 369 - 385
  • [7] THE DOUGLAS-RACHFORD ALGORITHM FOR TWO (NOT NECESSARILY INTERSECTING) AFFINE SUBSPACES
    Bauschke, Heinz H.
    Moursi, Walaa M.
    SIAM JOURNAL ON OPTIMIZATION, 2016, 26 (02) : 968 - 985
  • [8] Optimal Convergence Rates for Generalized Alternating Projections
    Falt, Mattias
    Giselsson, Pontus
    2017 IEEE 56TH ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2017,
  • [9] Local Convergence Properties of Douglas-Rachford and Alternating Direction Method of Multipliers
    Liang, Jingwei
    Fadili, Jalal
    Peyre, Gabriel
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2017, 172 (03) : 874 - 913
  • [10] Linear Convergence and Metric Selection for Douglas-Rachford Splitting and ADMM
    Giselsson, Pontus
    Boyd, Stephen
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (02) : 532 - 544