Riemannian metric application in the optimal control of the manipulator performance

被引:0
|
作者
Huang, XH [1 ]
Wang, DL [1 ]
机构
[1] Dalian Univ Technol, Dalian 116023, Peoples R China
来源
2003 IEEE INTELLIGENT TRANSPORTATION SYSTEMS PROCEEDINGS, VOLS. 1 & 2 | 2003年
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
According to the geometry, the kinematics and the dynamics about the robotic manipulator, on the base of the Riemannian metric, the property of the smooth hyper-surface and the manifold have been studied. The SCARA robot has been set as a example in this work, the cure that-represents the minimal energy and the differential equation group that images the coupling of the manipulator are showed.
引用
收藏
页码:1610 / 1615
页数:6
相关论文
共 50 条
  • [1] Optimal design of dynamic and control performance for planar manipulator
    游玮
    孔民秀
    孙立宁
    杜志江
    JournalofCentralSouthUniversity, 2012, 19 (01) : 108 - 116
  • [2] Optimal design of dynamic and control performance for planar manipulator
    Wei You
    Min-xiu Kong
    Li-ning Sun
    Zhi-jiang Du
    Journal of Central South University, 2012, 19 : 108 - 116
  • [3] Optimal design of dynamic and control performance for planar manipulator
    You Wei
    Kong Min-xiu
    Sun Li-ning
    Du Zhi-jiang
    JOURNAL OF CENTRAL SOUTH UNIVERSITY, 2012, 19 (01) : 108 - 116
  • [4] Optimal Control of Manipulator
    Dolgii, Yurii F.
    Chupin, Ilya A.
    BULLETIN OF IRKUTSK STATE UNIVERSITY-SERIES MATHEMATICS, 2023, 43 : 3 - 18
  • [5] Riemannian Metric Based Performance Monitoring and Diagnosis for a Class of Feedback Control Systems
    Li L.-L.
    Li S.-S.
    Ding S.X.
    Peng X.
    Peng K.-X.
    Zidonghua Xuebao/Acta Automatica Sinica, 2023, 49 (09): : 1928 - 1940
  • [6] Linearization approach to optimal control theory of manipulator operational performance
    Huang, Xiaohua
    Wang, Delun
    Jixie Gongcheng Xuebao/Chinese Journal of Mechanical Engineering, 2002, 38 (SUPPL.): : 215 - 218
  • [7] A Robust Optimal Nonlinear Control for Uncertain Systems: Application to a Robot Manipulator
    Teodorescu, C. S.
    Vandenplas, S.
    2015 IEEE CONFERENCE ON CONTROL AND APPLICATIONS (CCA 2015), 2015, : 953 - 959
  • [8] Optimal control on Riemannian manifolds by interpolation
    Giambò, R
    Giannoni, F
    Piccione, P
    MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2004, 16 (04) : 278 - 296
  • [9] Optimal control of geodesics in Riemannian Manifolds
    Rozsnyo, R
    Semmler, KD
    ICNAAM 2004: INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2004, 2004, : 327 - 330
  • [10] Optimal Control on Riemannian Manifolds by Interpolation
    Roberto Giambò
    Fabio Giannoni
    Paolo Piccione
    Mathematics of Control, Signals and Systems, 2004, 16 : 278 - 296