Light bullets in the spatiotemporal nonlinear Schrodinger equation with a variable negative diffraction coefficient

被引:41
|
作者
Zhong, Wei-Ping [1 ]
Belic, Milivoj [2 ,3 ]
Assanto, Gaetano [4 ]
Malomed, Boris A. [5 ,6 ]
Huang, Tingwen [2 ]
机构
[1] Shunde Polytech, Elect & Informat Engn Dept, Shunde 528300, Guangdong, Peoples R China
[2] Texas A&M Univ Qatar, Doha 23874, Qatar
[3] Univ Belgrade, Inst Phys, Belgrade 11001, Serbia
[4] Univ Rome Roma Tre, NooEL, I-00146 Rome, Italy
[5] Tel Aviv Univ, Fac Engn, Sch Elect Engn, Dept Phys Elect, IL-69978 Tel Aviv, Israel
[6] ICFO Inst Ciencies Foton, E-08860 Castelldefels, Barcelona, Spain
来源
PHYSICAL REVIEW A | 2011年 / 84卷 / 04期
基金
新加坡国家研究基金会;
关键词
SPECTRAL TRANSFORM; OPTICAL VORTICES; VORTEX BEAM; SOLITONS; BRIGHT;
D O I
10.1103/PhysRevA.84.043801
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We report approximate analytical solutions to the (3+1)-dimensional spatiotemporal nonlinear Schrodinger equation, with the uniform self-focusing nonlinearity and a variable negative radial diffraction coefficient, in the form of three-dimensional solitons. The model may be realized in artificial optical media, such as left-handed materials and photonic crystals, with the anomalous sign of the group-velocity dispersion (GVD). The same setting may be realized through the interplay of the self-defocusing nonlinearity, normal GVD, and positive variable diffraction. The Hartree approximation is utilized to achieve a suitable separation of variables in the model. Then, an inverse procedure is introduced, with the aim to select a suitable profile of the modulated diffraction coefficient supporting desirable soliton solutions (such as dromions, single-and multilayer rings, and multisoliton clusters). The validity of the analytical approximation and stability of the solutions is tested by means of direct simulations.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Soliton formation in a variable coefficient nonlinear Schrodinger equation
    Clarke, S
    Grimshaw, R
    Malomed, BA
    FIFTH INTERNATIONAL CONFERENCE ON MATHEMATICAL AND NUMERICAL ASPECTS OF WAVE PROPAGATION, 2000, : 280 - 284
  • [2] Spatiotemporal Rogue Waves for the Variable-Coefficient (3+1)-Dimensional Nonlinear Schrodinger Equation
    Wang Yue-Yue
    Dai Chao-Qing
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2012, 58 (02) : 255 - 260
  • [3] Solitons for a generalized variable-coefficient nonlinear Schrodinger equation
    Wang Huan
    Li Biao
    CHINESE PHYSICS B, 2011, 20 (04)
  • [4] Integral Methods to Solve the Variable Coefficient Nonlinear Schrodinger Equation
    El-Shiekh, Rehab Mahmoud
    Al-Noweby, Abdul-Ghani
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2013, 68 (3-4): : 255 - 260
  • [5] Light bullets in coupled nonlinear Schrodinger equations with variable coefficients and a trapping potential
    Xu, Si-Liu
    Zhao, Guo-Peng
    Belic, Milivoj R.
    He, Jun-Rong
    Xue, Li
    OPTICS EXPRESS, 2017, 25 (08): : 9094 - 9104
  • [6] Dromion-like structures in the variable coefficient nonlinear Schrodinger equation
    Liu, Wen-Jun
    Tian, Bo
    Lei, Ming
    APPLIED MATHEMATICS LETTERS, 2014, 30 : 28 - 32
  • [7] Computational Soliton solutions for the variable coefficient nonlinear Schrodinger equation by collective variable method
    Raza, Nauman
    Hassan, Zara
    Seadawy, Aly
    OPTICAL AND QUANTUM ELECTRONICS, 2021, 53 (07)
  • [8] The variable separation approach and study on solving the variable-coefficient nonlinear Schrodinger equation
    Zhang, JF
    Xu, CZ
    He, BG
    ACTA PHYSICA SINICA, 2004, 53 (11) : 3652 - 3656
  • [9] Rogue wave light bullets of the three-dimensional inhomogeneous nonlinear Schrodinger equation
    He, Jingsong
    Song, Yufeng
    Tiofack, C. G. L.
    Taki, M.
    PHOTONICS RESEARCH, 2021, 9 (04) : 643 - 648
  • [10] Optical stripes and bullets for a modified nonlinear Schrodinger equation
    Polymilis, C
    Frantzeskakis, DJ
    Yannacopoulos, AN
    Hizanidis, K
    Rowlands, G
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2001, 18 (01) : 75 - 80