Inverse Design of Nanoparticles Using Multi-Target Machine Learning

被引:19
|
作者
Li, Sichao [1 ]
Barnard, Amanda S. [1 ]
机构
[1] Australian Natl Univ, Sch Comp, Acton, ACT 2601, Australia
关键词
inverse design; machine learning; nanoparticles; ABSOLUTE ERROR MAE; STRUCTURE/PROPERTY RELATIONSHIPS; CLASSIFICATION; REGRESSION; MODELS; RMSE;
D O I
10.1002/adts.202100414
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this study a new approach to inverse design is presented that draws on the multi-functionality of nanomaterials and uses sets of properties to predict a unique nanoparticle structure. This approach involves multi-target regression and uses a precursory forward structure/property prediction to focus the model on the most important characteristics before inverting the problem and simultaneously predicting multiple structural features of a single nanoparticle. The workflow is general, as demonstrated on two nanoparticle data sets, and can rapidly predict property/structure relationships to guide further research and development without the need for additional optimization or high-throughput sampling.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Safety-by-design using forward and inverse multi-target machine learning
    Li, Sichao
    Barnard, S. Amanda
    CHEMOSPHERE, 2022, 303
  • [2] Inverse Design of MXenes for High-Capacity Energy Storage Materials Using Multi-Target Machine Learning
    Li, Sichao
    Barnard, Amanda S.
    CHEMISTRY OF MATERIALS, 2022, 34 (11) : 4964 - 4974
  • [3] Optimization-Free Inverse Design of High-Dimensional Nanoparticle Electrocatalysts Using Multi-target Machine Learning
    Li, Sichao
    Ting, Jonathan Y. C.
    Barnard, Amanda S.
    COMPUTATIONAL SCIENCE, ICCS 2022, PT II, 2022, : 307 - 318
  • [4] Multi-target Compiler for the Deployment of Machine Learning Models
    Castro-Lopez, Oscar
    Vega-Lopez, Ines F.
    PROCEEDINGS OF THE 2019 IEEE/ACM INTERNATIONAL SYMPOSIUM ON CODE GENERATION AND OPTIMIZATION (CGO '19), 2019, : 280 - 281
  • [5] Predicting Ohio Bridges' Conditions Using Multi-Target Machine Learning Algorithms
    Armin, Rashidi Nasab
    Hazem, Elzarka
    INTERNATIONAL CONFERENCE ON TRANSPORTATION AND DEVELOPMENT 2024: PAVEMENTS AND INFRASTRUCTURE SYSTEMS, ICTD 2024, 2024, : 624 - 633
  • [6] Outlier Robust Extreme Machine Learning for multi-target regression
    Souza da Silva, Bruno Legora
    Inaba, Fernando Kentaro
    Teatini Salles, Evandro Ottoni
    Ciarelli, Patrick Marques
    EXPERT SYSTEMS WITH APPLICATIONS, 2020, 140
  • [7] Inverse Reinforcement Learning for Generalized Labeled Multi-Bernoulli Multi-Target Tracking
    Thomas, Ryan W.
    Larson, Jordan D.
    2021 IEEE AEROSPACE CONFERENCE (AEROCONF 2021), 2021,
  • [8] Using meta-learning for multi-target regression
    Aguiar, Gabriel J.
    Santana, Everton J.
    de Carvalho, Andre C. P. F. L.
    Barbon Junior, Sylvio
    INFORMATION SCIENCES, 2022, 584 : 665 - 684
  • [9] Automated design of multi-target ligands by generative deep learning
    Isigkeit, Laura
    Hoermann, Tim
    Schallmayer, Espen
    Scholz, Katharina
    Lillich, Felix F.
    Ehrler, Johanna H. M.
    Hufnagel, Benedikt
    Buechner, Jasmin
    Marschner, Julian A.
    Pabel, Joerg
    Proschak, Ewgenij
    Merk, Daniel
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [10] Explainable machine learning for medicinal chemistry: exploring multi-target compounds
    Bajorath, Juergen
    FUTURE MEDICINAL CHEMISTRY, 2022, 14 (16) : 1171 - 1173