Sentiment Recognition for Short Annotated GIFs Using Visual-Textual Fusion

被引:22
|
作者
Liu, Tianliang [1 ]
Wan, Junwei [1 ]
Dai, Xiubin [1 ]
Liu, Feng [1 ]
You, Quanzeng [2 ]
Luo, Jiebo [3 ]
机构
[1] Nanjing Univ Posts & Telecommun, Key Lab Broadband Wireless Commun & Sensor Networ, Jiangsu Prov Key Lab Image Proc & Image Commun,Na, Minist Educ,Jiangsu Prov Engn Res Ctr High Perfor, Nanjing 210003, Peoples R China
[2] Microsoft Cloud A1, Comp Vis Team, Redmond, WA 98052 USA
[3] Univ Rochester, Dept Comp Sci, Rochester, NY 14627 USA
基金
中国国家自然科学基金;
关键词
Sentiment analysis; Visualization; Feature extraction; Streaming media; Semantics; Twitter; GIFs Sentiment; 3-D Convolution; Convolutional Long-Short-Term-Memory; SentiWordNet3; 0; Grid Searching; PREDICTION;
D O I
10.1109/TMM.2019.2936805
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the rapid development of social media, visual sentiment analysis from image or video has become a hot spot in visual understanding researches. In this work, we propose an effective approach using visual and textual fusion for sentiment analysis of short GIF videos with textual descriptions. We extract both sequence-level and frame-level visual features for each given GIF video. Next, we build a visual sentiment classifier by using the extracted features. We also define a mapping function, which converts the sentiment probability from the classifier to a sentiment score used in our fusion function. At the same time, for the accompanied textual annotations, we employ the Synset forest to extract the sets of the meaningful sentiment words and utilize the SentiWordNet3.0 model to obtain the textual sentiment score. Then, we design a joint visual-textual sentiment score function weighted with visual sentiment component and textual sentiment one. To make the function more robust, we introduce a noticeable difference threshold to further process the fused sentiment score. Finally, we adopt a grid search technique to obtain relevant model hyper-parameters by optimizing a sentiment aware score function. Experimental results and analysis extensively demonstrate the effectiveness of the proposed sentiment recognition scheme on three benchmark datasets including T-GIF dataset, GSO-2016 dataset and Adjusted-GIFGIF dataset.
引用
收藏
页码:1098 / 1110
页数:13
相关论文
共 50 条
  • [1] Hybrid Representation and Decision Fusion towards Visual-textual Sentiment
    Yin, Chunyong
    Zhang, Sun
    Zeng, Qingkui
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2023, 14 (03)
  • [2] A multimodal fusion network with attention mechanisms for visual-textual sentiment analysis
    Gan, Chenquan
    Fu, Xiang
    Feng, Qingdong
    Zhu, Qingyi
    Cao, Yang
    Zhu, Ye
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 242
  • [3] VISUAL-TEXTUAL SENTIMENT ANALYSIS IN PRODUCT REVIEWS
    Ye, Jin
    Peng, Xiaojiang
    Qiao, Yu
    Xing, Hao
    Li, Junli
    Ji, Rongrong
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 869 - 873
  • [4] Multi-Model Fusion Framework Using Deep Learning for Visual-Textual Sentiment Classification
    Al-Tameemi, Israa K. Salman
    Feizi-Derakhshi, Mohammad-Reza
    Pashazadeh, Saeed
    Asadpour, Mohammad
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 76 (02): : 2145 - 2177
  • [5] Multi-Model Fusion Framework Using Deep Learning for Visual-Textual Sentiment Classification
    Salman Al-Tameemi I.K.
    Feizi-Derakhshi M.-R.
    Pashazadeh S.
    Asadpour M.
    Computers, Materials and Continua, 2023, 76 (02): : 2145 - 2177
  • [6] Holistic Visual-Textual Sentiment Analysis with Prior Models
    Chen, Junyu
    An, Jie
    Lyu, Hanjia
    Kanan, Christopher
    Luo, Jiebo
    2024 IEEE 7TH INTERNATIONAL CONFERENCE ON MULTIMEDIA INFORMATION PROCESSING AND RETRIEVAL, MIPR 2024, 2024, : 196 - 202
  • [7] Joint Visual-Textual Sentiment Analysis with Deep Neural Networks
    You, Quanzeng
    Luo, Jiebo
    Jin, Hailin
    Yang, Jianchao
    MM'15: PROCEEDINGS OF THE 2015 ACM MULTIMEDIA CONFERENCE, 2015, : 1071 - 1074
  • [8] A Simple Visual-Textual Baseline for Pedestrian Attribute Recognition
    Cheng, Xinhua
    Jia, Mengxi
    Wang, Qian
    Zhang, Jian
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (10) : 6994 - 7004
  • [9] A Novel Visual-Textual Sentiment Analysis Framework for Social Media Data
    Jindal, Kanika
    Aron, Rajni
    COGNITIVE COMPUTATION, 2021, 13 (06) : 1433 - 1450
  • [10] A Novel Visual-Textual Sentiment Analysis Framework for Social Media Data
    Kanika Jindal
    Rajni Aron
    Cognitive Computation, 2021, 13 : 1433 - 1450