In an oscillating system driven by a sine wave pump, the resonance frequency of the respiratory system can be determined using phase analysis. At resonance frequency, when elastance and inertance cancel out, flow becomes in-phase with resistance. In premature infants with respiratory distress syndrome, owing to surfactant deficiency, localized areas of hyperinflation and collapse develop, resulting in complex changes in overall pulmonary mechanics. We investigated the effect of measuring resonance frequency of the respiratory system by phase analysis at differ ent points of the respiratory cycle: end of inspiration, end of expiration, mid-inspiration and mid-expiration. Ten ventilated premature infants with respiratory distress syndrome were studied, gestational age ranged from 24 to 30 weeks (mean 27.6 weeks) and birth weight ranged from 0.7 to 1.505 kg (mean 0.984 kg). Results: The resonance frequency was consistently higher when measured at the end of inspiration compared with the end of expiration. The expected trend of phase variation. that is, negative below the resonance frequency and positive above, was most consistently found when analysis was done at the end of inspiration. Conclusions: These findings were most likely a result of the complexity of pulmonary mechanics in the surfactant-deficient lungs, rendering the single compartment model we based our theory on inadequate. However, phase analysis performed at the end of inspiration seemed to produce the most reliable and consistent results. (C) 1998 IPEM. Published by Elsevier Science Ltd. All rights reserved.