INDEFINITENESS IN SEMI-INTUITIONISTIC SET THEORIES: ON A CONJECTURE OF FEFERMAN

被引:8
|
作者
Rathjen, Michael [1 ]
机构
[1] Univ Leeds, Dept Pure Math, Leeds LS2 9JT, W Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
Continuum hypothesis; indefinite concepts; semi-intuitionistic set theory; realizability; relativized constructible hierarchy; forcing;
D O I
10.1017/jsl.2015.55
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper proves a conjecture of Solomon Feferman concerning the indefiniteness of the continuum hypothesis relative to a semi-intuitionistic set theory.
引用
收藏
页码:742 / 754
页数:13
相关论文
共 24 条
  • [1] The scope of Feferman's semi-intuitionistic set theories and his second conjecture
    Rathjen, Michael
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2019, 30 (03): : 500 - 525
  • [2] SEMI-INTUITIONISTIC SET THEORY
    POZSGAY, LJ
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (01): : 253 - &
  • [3] Semi-intuitionistic Logic
    Juan Manuel Cornejo
    Studia Logica, 2011, 98 : 9 - 25
  • [4] Semi-intuitionistic Logic
    Manuel Cornejo, Juan
    STUDIA LOGICA, 2011, 98 (1-2) : 9 - 25
  • [5] On Some Semi-Intuitionistic Logics
    Juan M. Cornejo
    Ignacio D. Viglizzo
    Studia Logica, 2015, 103 : 303 - 344
  • [6] On Some Semi-Intuitionistic Logics
    Cornejo, Juan M.
    Viglizzo, Ignacio D.
    STUDIA LOGICA, 2015, 103 (02) : 303 - 344
  • [7] Semi-intuitionistic Logic with Strong Negation
    Manuel Cornejo, Juan
    Viglizzo, Ignacio
    STUDIA LOGICA, 2018, 106 (02) : 281 - 293
  • [8] Semi-intuitionistic Logic with Strong Negation
    Juan Manuel Cornejo
    Ignacio Viglizzo
    Studia Logica, 2018, 106 : 281 - 293
  • [9] Gentzen-Style Sequent Calculus for Semi-intuitionistic Logic
    Castano, Diego
    Manuel Cornejo, Juan
    STUDIA LOGICA, 2016, 104 (06) : 1245 - 1265
  • [10] Gentzen-Style Sequent Calculus for Semi-intuitionistic Logic
    Diego Castaño
    Juan Manuel Cornejo
    Studia Logica, 2016, 104 : 1245 - 1265