STRONGER SUM-PRODUCT INEQUALITIES FOR SMALL SETS

被引:10
|
作者
Rudnev, M. [1 ]
Shakan, G. [2 ]
Shkredov, I. D. [3 ,4 ,5 ]
机构
[1] Univ Bristol, Fry Bldg,Woodland Rd, Bristol BS8 1UG, Avon, England
[2] Univ Oxford, Math Inst, Andrew Wiles Bldg,Woodstock Rd, Oxford OX2 6GG, England
[3] Steklov Math Inst, Ul Gubkina 8, Moscow 119991, Russia
[4] RAS, IITP, Bolshoy Karetny 19, Moscow 127994, Russia
[5] MIPT, Inst Skii 9, Dolgoprudnyi 14170, Russia
基金
俄罗斯科学基金会;
关键词
Sum-product phenomenon;
D O I
10.1090/proc/14902
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let F be a field and let a finite A subset of F be sufficiently small in terms of the characteristic p of F if p > 0. We strengthen the "threshold" sum-product inequality vertical bar AA vertical bar(3)vertical bar A +/- A vertical bar(2) >> vertical bar A vertical bar(6), hence vertical bar AA vertical bar + vertical bar A + A vertical bar >> vertical bar A vertical bar(1+ 1/5), due to Roche-Newton, Rudnev, and Shkredov, to vertical bar AA vertical bar(5)vertical bar A +/- A vertical bar(4) >> vertical bar A vertical bar(11-o(1)), hence vertical bar AA vertical bar + vertical bar A +/- A vertical bar >> vertical bar A vertical bar(1+2/9-o(1)), as well as vertical bar AA vertical bar(36)vertical bar A - A vertical bar(24) >> vertical bar A vertical bar(73-o(1)). The latter inequality is "threshold-breaking", for it shows for epsilon > 0, one has vertical bar AA vertical bar <= vertical bar A vertical bar(1+epsilon) double right arrow vertical bar A - A vertical bar >> vertical bar A vertical bar(3/2+c(epsilon)), with c(epsilon) > 0 if epsilon is sufficiently small.
引用
收藏
页码:1467 / 1479
页数:13
相关论文
共 50 条
  • [1] The sum-product problem for small sets
    Clevenger, Ginny Ray
    Havard, Haley
    Heard, Patch
    Lott, Andrew
    Rice, Alex
    Wilson, Brittany
    INVOLVE, A JOURNAL OF MATHEMATICS, 2025, 18 (01):
  • [2] The Sum-Product Algorithm on Small Graphs
    O'Sullivan, M. E.
    Brevik, J.
    Wolski, R.
    ADVANCES IN CODING THEORY AND CRYPTOGRAPHY, 2007, 3 : 160 - +
  • [3] Product graphs, sum-product graphs and sum-product estimates over finite rings
    Le Anh Vinh
    FORUM MATHEMATICUM, 2015, 27 (03) : 1639 - 1655
  • [4] On sum-product bases
    Hegyvari, Norbert
    RAMANUJAN JOURNAL, 2009, 19 (01): : 1 - 8
  • [5] On sum-product bases
    Norbert Hegyvári
    The Ramanujan Journal, 2009, 19 : 1 - 8
  • [6] Sum-Product Autoencoding: Encoding and Decoding Representations Using Sum-Product Networks
    Vergari, Antonio
    Peharz, Robert
    Di Mauro, Nicola
    Molina, Alejandro
    Kersting, Kristian
    Esposito, Floriana
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 4163 - 4170
  • [7] An application of the sum-product phenomenon to sets avoiding several linear equations
    Shkredov, I. D.
    SBORNIK MATHEMATICS, 2018, 209 (04) : 580 - 603
  • [8] On the exponential sum-product problem
    Shparlinski, Igor
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2008, 19 (02): : 325 - 331
  • [9] On Thin Sum-Product Bases
    Hennecart F.
    Prakash G.
    Pramod E.
    Combinatorica, 2022, 42 (2) : 165 - 202
  • [10] An update on the sum-product problem
    Rudnev, Misha
    Stevens, Sophie
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2022, 173 (02) : 411 - 430