Effects of nitrogen form on growth, CO2 assimilation, chlorophyll fluorescence, and photosynthetic electron allocation in cucumber and rice plants

被引:50
|
作者
Zhou, Yan-hong [1 ]
Zhang, Yi-li [1 ]
Wang, Xue-min [1 ]
Cui, Jin-xia [1 ]
Xia, Xiao-jian [1 ]
Shi, Kai [1 ]
Yu, Jing-quan [1 ,2 ]
机构
[1] Zhejiang Univ, Dept Hort, Hangzhou 310029, Zhejiang, Peoples R China
[2] Minist Agr, Key Lab Hort Plants Growth Dev & Qual Improvement, Hangzhou 310029, Zhejiang, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Nitrogen form; Photosynthetic electron allocation; Alternative electron flux; Nitrate reductase; WATER-WATER CYCLE; AMMONIUM TOXICITY; CARBON-DIOXIDE; NITRATE; LEAVES; WHEAT; L; PHOTORESPIRATION; METABOLISM; PHYSIOLOGY;
D O I
10.1631/jzus.B1000059
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cucumber and rice plants with varying ammonium (NH4 (+)) sensitivities were used to examine the effects of different nitrogen (N) sources on gas exchange, chlorophyll (Chl) fluorescence quenching, and photosynthetic electron allocation. Compared to nitrate (NO3 (-))-grown plants, cucumber plants grown under NH4 (+)-nutrition showed decreased plant growth, net photosynthetic rate, stomatal conductance, intercellular carbon dioxide (CO2) level, transpiration rate, maximum photochemical efficiency of photosystem II, and O-2-independent alternative electron flux, and increased O-2-dependent alternative electron flux. However, the N source had little effect on gas exchange, Chl a fluorescence parameters, and photosynthetic electron allocation in rice plants, except that NH4 (+)-grown plants had a higher O-2-independent alternative electron flux than NO3 (-)-grown plants. NO3 (-) reduction activity was rarely detected in leaves of NH4 (+)-grown cucumber plants, but was high in NH4 (+)-grown rice plants. These results demonstrate that significant amounts of photosynthetic electron transport were coupled to NO3 (-) assimilation, an effect more significant in NO3 (-)-grown plants than in NH4 (+)-grown plants. Meanwhile, NH4 (+)-tolerant plants exhibited a higher demand for the reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) for NO3 (-) reduction, regardless of the N form supplied, while NH4 (+)-sensitive plants had a high water-water cycle activity when NH4 (+) was supplied as the sole N source.
引用
收藏
页码:126 / 134
页数:9
相关论文
共 50 条