Skin Cancer Detection Using Convolutional Neural Network

被引:34
|
作者
Hasan, Mahamudul [1 ]
Das Barman, Surajit [1 ]
Islam, Samia [1 ]
Reza, Ahmed Wasif [1 ]
机构
[1] East West Univ, Dept Comp Sci & Engn, Dhaka, Bangladesh
关键词
Machine Learning; Convolution Neural Network; Information Search and Retrieval; Melanoma; Feature Extraction;
D O I
10.1145/3330482.3330525
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Skin cancer is an alarming disease for mankind. The necessity of early diagnosis of the skin cancer have been increased because of the rapid growth rate of Melanoma skin cancer, its high treatment costs, and death rate. This cancer cells are detected manually and it takes time to cure in most of the cases. This paper proposed an artificial skin cancer detection system using image processing and machine learning method. The features of the affected skin cells are extracted after the segmentation of the dermoscopic images using feature extraction technique. A deep learning based method convolutional neural network classifier is used for the stratification of the extracted features. An accuracy of 89.5% and the training accuracy of 93.7% have been achieved after applying the publicly available data set.
引用
下载
收藏
页码:254 / 258
页数:5
相关论文
共 50 条
  • [1] Skin Cancer Detection using Convolutional Neural Network
    Malo, Dipu Chandra
    Rahman, Md Mustafizur
    Mahbub, Jahin
    Khan, Mohammad Monirujjaman
    2022 IEEE 12TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE (CCWC), 2022, : 169 - 176
  • [2] Skin cancer detection using dermoscopic images with convolutional neural network
    Khadija Nawaz
    Atika Zanib
    Iqra Shabir
    Jianqiang Li
    Yu Wang
    Tariq Mahmood
    Amjad Rehman
    Scientific Reports, 15 (1)
  • [3] A Convolutional Neural Network Framework for Accurate Skin Cancer Detection
    Thurnhofer-Hemsi, Karl
    Dominguez, Enrique
    NEURAL PROCESSING LETTERS, 2021, 53 (05) : 3073 - 3093
  • [4] A Convolutional Neural Network Framework for Accurate Skin Cancer Detection
    Karl Thurnhofer-Hemsi
    Enrique Domínguez
    Neural Processing Letters, 2021, 53 : 3073 - 3093
  • [5] Convolutional Neural Network Approach for Early Skin Cancer Detection
    Raut, Roshani
    Gavali, Niraj
    Amate, Prathamesh
    Amode, Mihir Ajay
    Malunjkar, Shraddha
    Borkar, Pradnya
    JOURNAL OF ELECTRICAL SYSTEMS, 2023, 19 (03) : 1 - 14
  • [6] Skin pore detection and classification using convolutional neural network
    Vasic, Cedomir
    AUSTRALASIAN JOURNAL OF DERMATOLOGY, 2024, 65 (02) : 178 - 181
  • [7] The skin cancer classification using deep convolutional neural network
    Dorj, Ulzii-Orshikh
    Lee, Keun-Kwang
    Choi, Jae-Young
    Lee, Malrey
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (08) : 9909 - 9924
  • [8] Classification of Melanoma Skin Cancer using Convolutional Neural Network
    Refianti, Rina
    Mutiara, Achmad Benny
    Priyandini, Rachmadinna Poetri
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2019, 10 (03) : 409 - 417
  • [9] The skin cancer classification using deep convolutional neural network
    Ulzii-Orshikh Dorj
    Keun-Kwang Lee
    Jae-Young Choi
    Malrey Lee
    Multimedia Tools and Applications, 2018, 77 : 9909 - 9924
  • [10] Skin Detection Based on Convolutional Neural Network
    Bordjiba, Yamina
    Bencheriet, Chemesse Ennehar
    Mabrek, Zahia
    NETWORKING, INTELLIGENT SYSTEMS AND SECURITY, 2022, 237 : 75 - 85